Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m-1>0\\\Delta'=m^2-4m+4+m-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left(m-\dfrac{3}{2}\right)^2< -\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\) vô nghiệm
Vậy không tồn tại giá trị m thỏa mãn
b, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-1\right)x^2+2\left(m-2\right)x-1< 0\) có nghiệm với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=m^2-3m+3< 0\end{matrix}\right.\)
\(\Leftrightarrow\) vô nghiệm
Vậy không tồn tại giá trị m thỏa mãn
Bất phương trình đã cho vô nghiệm khi và chỉ khi 5 x 2 - x + m ≤ 0 nghiệm đúng với mọi x.
⇔ 1 - 20m < 0 ⇔ m > 1/20
Đáp số: m > 1/20
(m-2)x^2+2(m-2)x+m+4>=0
TH1: m=2
=>6>=0(nhận)
TH2: m<>2
Δ=(2m-4)^2-4(m-2)(m+4)
=4m^2-16m+16-4(m^2+2m-8)
=4m^2-16m+16-4m^2-8m+32
=-24m+48
Để BPTVN thì -24m+48<0
=>-24m<-48
=>m>2
Câu 1:
Ta có: \(\Delta=\left[-2\left(m+2\right)\right]^2-4\cdot m\cdot\left(2+3m\right)\)
\(\Leftrightarrow\Delta=\left(2m+4\right)^2-4m\left(2+3m\right)\)
\(\Leftrightarrow\Delta=4m^2+16m+16-8m-12m^2\)
\(\Leftrightarrow\Delta=-8m^2+8m+16\)
\(\Leftrightarrow\Delta=-8\left(m^2-m-2\right)\)
Để phương trình vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow m^2-m-2>0\)
\(\Leftrightarrow\left(m-2\right)\left(m+1\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-2>0\\m+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}m-2< 0\\m+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m>2\\m>-1\end{matrix}\right.\\\left\{{}\begin{matrix}m< 2\\m< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -1\end{matrix}\right.\)
Câu 1
Để pt vô nghiệm \(\Rightarrow\Delta'=\left(m+2\right)^2-\left(3m+2\right)m=m^2+4m+4-3m^2-2m=-2m^2+2m+4=-2\left(m^2-m-2\right)=-2\left(m+1\right)\left(m-2\right)< 0\) \(\Leftrightarrow\left(m+1\right)\left(m-2\right)>0\Leftrightarrow\left[{}\begin{matrix}m< -1\\m>2\end{matrix}\right.\)
1.
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta=\left(m+1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m^2+7m+1< 0\end{matrix}\right.\)
\(\Leftrightarrow m< \dfrac{7-\sqrt{61}}{6}\)
2.
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\3m^2+13m+4\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-4\le m\le-\dfrac{1}{3}\end{matrix}\right.\)
Không tồn tại m thỏa mãn
\(x^2-x+m\le0\)
\(\Leftrightarrow m\le f\left(x\right)=-x^2+x\)
Bảng biến thiên:
Yêu cầu bài toán thỏa mãn khi \(m>maxf\left(x\right)=f\left(\dfrac{1}{2}\right)=\dfrac{1}{4}\)
để phương trình \(5x^2-x+m\le0\) vô nghiệm thì \(5x^2-x+m>0\forall x\) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta< 0\\a>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-1\right)^2-5\left(m\right)>0\\5>0\left(luônđúng\right)\end{matrix}\right.\) \(\Leftrightarrow1-5m>0\Leftrightarrow m< \dfrac{1}{5}\)
vậy \(m< \dfrac{1}{5}\) thì phương trình \(5x^2-x+m\le0\) vô nghiệm