K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

\(B=x^2+2y^2-2xy+2x-4y-12\)

\(B=\left(x^2-2xy+y^2\right)+y^2+2x-4y-12\)

\(B=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y^2-2y+1\right)+10\)

\(B=\left(x-y+1\right)^2+\left(y-1\right)^2+10\)

Mà  \(\left(x-y+1\right)^2\ge0\forall x;y\)

       \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow B\ge10\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x-y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

Vậy  \(B_{Min}=10\Leftrightarrow\left(x;y\right)=\left(0;1\right)\)

8 tháng 8 2018

Sai rồi bạn

10 tháng 3 2016

2P = \(2x^2+4xy+4y^2-12x-8y+50\)

      = \(\left(x+2y\right)^2-2\left(x+2y\right)\cdot2+4+x^2-8x+16+30\)

      = \(\left(x+2y-2\right)^2+\left(x-4\right)^2+30\ge30\)

=> P \(\ge15\)

Dấu '' = '' xảy ra khi x = 4 ; y = -1

10 tháng 3 2016

P = x2 + 2y2 + 2xy - 6x - 4y + 25 đạt GTNN khi x2 + 2y2 + 2xy - 6x - 4y = -25 và P = 0

Lập luận đỉnh cao!! ^~^

8 tháng 7 2019

\(A=\sqrt{2x^2-4x+3}+3\)

Ta có: \(2x^2-4x+3\)

\(=2\left(x^2-2x+\frac{3}{2}\right)\)

\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)

\(=2[\left(x-1\right)^2+\frac{1}{2}]\)

\(=2\left(x-1\right)^2+1\ge1\)

\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)

\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)

\(\Rightarrow MinA=4\Leftrightarrow x=1\)

10 tháng 12 2017

Có : (a-b)^2 >= 0 

<=> a^2-2ab+b^2 >= 0

<=> a^2+b^2 >= 2ab

<=> a^2+2ab+b^2 >= 4ab

<=> (a+b)^2 >= 4ab (1) <=> 2ab <= (a+b)^2/2 (2)

Với a,b > 0 thì chia 2 vế của (1) cho (a+b).ab , ta được :

a+b/ab >= 4/a+b

<=> 1/a + 1/b >= 4/a+b (*)

Áp dụng bđt (*) và bđt (2) thì : 

P = 1/2xy + 1/x^2+4y^2 = 1/4xy + (1/4xy + 1/x^2+4y^2) >= 1/2.x.2y + 4/x^2+4xy+y^2

>= 1 : (x+2y)^2/2 + 4/(x+2y)^2 = 1 : 1/2 +4/1 = 6

Dấu "='' xảy ra <=> x=2y và x+2y=1

<=> x=0,5 ; y=0,25

Vậy GTNN của P = 6 <=> x=0,5 và y=0,25

k mk nha

10 tháng 12 2017

mk mới làm cách khác bạn 

P=\(\frac{1}{x^2+4y^2}\)+\(\frac{1}{4xy}\)+\(\frac{1}{4xy}\)

áp dụng BĐT phụ 1/a +1/b >= 4/a+b

=> \(\frac{1}{x^2+4y^2}\)+\(\frac{1}{4xy}\)>= \(\frac{4}{\left(x+2y\right)^2}\)=4 (1)

áp dụng BĐT phụ 1/ab >= 4/(a+b)^2

+) 1/4xy = 1/2.1/2xy

1/2xy>= 4/(x+2y)^2 = 4

=> 1/4xy >= 1/2 . 4 = 2 (2)

cộng (1) và (2) => P>=6