K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

Ta có: \(\left(\left|x-3\right|+2\right)^2\ge0\forall x\) không âm

\(\left|y+3\right|\ge3\forall y\) không âm

Cộng theo vế 2 BĐT trên ta có:

\(A=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018\ge0+3+2018=2021\)

Vậy \(A_{min}=2021\Leftrightarrow\hept{\begin{cases}\left(\left|x-3\right|+2\right)^2=0\\\left|y+3\right|=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}}\)

3 câu này bạn áp dụng cái này nhé.

`a^2 >=0 forall a`.

`|a| >=0 forall a`.

`1/a` xác định `<=> a ne 0`.

a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y

Dấu = xảy ra khi x=-30 và y=4

b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y

Dấu = xảy ra khi x=-1/3 và y=1/6

c: -x^2-x+1=-(x^2+x-1)

=-(x^2+x+1/4-5/4)

=-(x+1/2)^2+5/4<=5/4

=>R>=3:5/4=12/5

Dấu = xảy ra khi x=-1/2

3 tháng 6 2019

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

4 tháng 4 2017

Ta có: \(\left\{{}\begin{matrix}\left|x-3\right|\ge0\forall x\\\left|y+3\right|\ge0\forall y\end{matrix}\right.\)

+) \(\left|x-3\right|\ge0\Rightarrow\left(\left|x-3\right|+2\right)\ge2\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge4\)

Dấu ''='' xảy ra \(\Leftrightarrow x=3\)

=> \(Min_{\left(\left|x-3\right|+2\right)^2}=4\Leftrightarrow x=3\)

+) \(\left|y+3\right|\ge0\)

Dấu ''='' xảy ra \(\Leftrightarrow y=-3\)

=> \(Min_{\left|y+3\right|}=0\Leftrightarrow y=-3\)

\(\Rightarrow MIN_Q=4+0+2017=2021\)

Vậy \(MIN_Q=2021\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)

5 tháng 4 2017

nhìn nhầm, thông cảm

bn sửa lại giùm + 2007 = 2011 nhé!

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

\(\left|x-3\right|+2>=2\)

=>(|x-3|+2)^2>=4

\(A=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018>=4+2018=2022\)

Dấu = xảy ra khi x-3=0 và y+3=0

=>x=3 và y=-3