K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

\(B=\left(x-2y\right)^2+y^2+2x+6y+2046=\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]+\left(y^2+10y+25\right)+2020=\left(x-2y+1\right)^2+\left(y+5\right)^2+2020\ge2020\)

\(minB=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-11\\y=-5\end{matrix}\right.\)

8 tháng 12 2016

\(2x^2+2y^2-2xy-6y+21\)

\(2A=4x^2+4y^2-4xy-12y+42\)

\(=4x^2-4xy+4y^2-12y+42\)

\(=4x^2-4xy+y^2+3y^2-12y+42\)

\(=\left(4x^2-4xy+y^2\right)+\left(3y^2-12y+42\right)\)

\(=\left(2x-y\right)^2+3\left(y^2-4x+4\right)+30\)

\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)

Vậy GTNN là 30

8 tháng 12 2016

Cho mk sủa lại tí :

\(2A=4x^2+4y^2-4xy-12y+42\)

\(=4x^2-4xy+4y^2-12+42\)

\(=4x^2-4xy+y^2+3y^2-12y+42\)

\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)

\(\Rightarrow2A\ge30\Rightarrow A\ge15\Rightarrow\)GTNN là 15

13 tháng 7 2020

A = x2 + 2y2 + 2xy - 2x - 6y + 6

A = (x2 + 2xy + y2) - 2(x + y) + 1 + (y2 - 4y + 4) + 1

A = (x + y - 1)2 + (y - 2)2 + 1 \(\ge\)\(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1-y\\y=2\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy MinA = 1 khi x = -1 và y = 2

9 tháng 7 2017

\(Q=x^2+2y^2+2xy-2x-6y+2015\)

\(Q=x^2+2x\left(y-1\right)+2y^2-6y+2015\)

\(Q=x^2+2x\left(y-1\right)+y^2-2y+1+y^2-4y+4+2010\)

\(Q=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(y-2\right)^2+2010\)

\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)

Dấu "=" xảy ra khi x=-3;y=4

30 tháng 10 2017

2015 nha bạn.

21 tháng 9 2016

Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)

1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :

\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)

\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :

\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)

2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :

\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)

\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)

Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn 

20 tháng 5 2018

Xin lỗi bạn Cool chỉ biết làm cách vắn tắt thôi nếu vắn tắt quá thì cho Cool xin lỗi vì Cool không giỏi dạng này 

A=[(X\(^2\) -2XY+Y\(^2\) )+2(X-Y)+1]+(Y\(^2\) -8Y+16)]

(X-Y+1)\(^2\)+(Y-4)\(^2\)

\(\Rightarrow=0\)

=>Amin=0 khi y=4;x=3

20 tháng 5 2018

Đặt  \(KK=x^2-2xy+2y^2+2x-10y+17\)

\(KK=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)

\(KK=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)\)

\(KK=\left(x-y+1\right)^2+\left(y-4\right)^2\)

Mà  \(\left(x-y+1\right)^2\ge0\)

       \(\left(y-4\right)^2\ge0\)

\(\Rightarrow KK\ge0\)

Dấu " = " xảy ra khi : 

\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

Vậy  \(KK_{Min}=0\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)