K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2019

\(A=-\left(x^2-2x+4\right)\)

\(A=-\left(x+2\right)^2\)

vì -(x+2)^2 <=0

nên MIN A=0

<=>-(x+2)=0=>x=-2

vây min của A là 0 tại x=-2

15 tháng 10 2019

A = 2x - x- 4

A = - [ x- 2 . 1 / 2 . x + ( 1 / 2 )2 - ( 1 / 2 )-  4 ]

A = - ( x - 1 / 2 )- 17 / 4 \(\le\)- 17 / 4

Dấu = xảy ra \(\Leftrightarrow\)x - 1 / 2 = 0

                       \(\Rightarrow\)x = 1 / 2

Vậy : Min A = - 17 / 4 \(\Leftrightarrow\)x = 1 / 2

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

22 tháng 9 2021

Bài 5:

a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)

\(minA=5\Leftrightarrow x=2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Bài 4:

a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxM=7\Leftrightarrow x=2\)

b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)

 

1 tháng 8 2019

\(A=x^2-12x+7=x^2-12x+36-29\)

\(=\left(x-6\right)^2-29\ge-29\)

Vậy \(A_{min}=-29\Leftrightarrow x=6\)

1 tháng 8 2019

\(C=x-x^2-4=-\left(x^2-x+4\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{3}{4}\le-\frac{3}{4}\)

Vậy \(C_{min}=\frac{-3}{4}\Leftrightarrow x=\frac{1}{2}\)

21 tháng 11 2022

Bài 1:

a: A=x^2-6x+10

=x^2-6x+9+1

=(x-3)^2+1>=1

Dấu = xảy ra khi x=3

b: \(B=3x^2-12x+1\)

=3(x^2-4x+1/3)

=3(x^2-4x+4-11/3)

=3(x-2)^2-11>=-11

Dấu = xảy ra khi x=2

12 tháng 12 2016

\(A=x^2-4x+7=\left(x^2-4x+4\right)+3=\left(x-2\right)^2+3\)

Vì: \(\left(x-2\right)^2\ge0\)

=> \(\left(x-2\right)^2+3\ge3\)

Vậy GTNN của A là 3 khi x=2

\(B=2x^2+12x-1=2\left(x^2+6x+9\right)-19=2\left(x+3\right)^2-19\)

Vì: \(2\left(x+3\right)^2\ge0\)

=> \(2\left(x+3\right)^2-19\ge-19\)

Vậy GTNN của B là -19 khi x=-3

\(C=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Vì: \(-\left(x-\frac{5}{2}\right)^2\le0\)

=> \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Vậy GTLN của C là \(\frac{25}{4}\) khi \(x=\frac{5}{2}\)

12 tháng 12 2016

Căm ơn bạn nhiều nhé ! Nếu được thì bạn làm giúp tớ bài hình bên trên nhé.

12 tháng 9 2016

\(A=x^2+x\) . Có: \(x^2\ge x\Rightarrow x^2+x\ge0\)

Dấu '=' xảy ra khi: \(x^2+x=0\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy: \(Min_A=0\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

12 tháng 9 2016

\(B=4x-12x+10\)

\(B=-8x+10\)

\(B=10-8x\)

Xét: \(x< 0\Rightarrow10-8x\ge10\)

Dấu '=' xảy ra khi: \(8x=0\Rightarrow x=0\)

Xét: \(x>0\Rightarrow10-8x\le10\)

Dấu '=' xảy ra khi: \(8x=0\Rightarrow x=0\)

Vậy: Khi x<0. \(Min_B=10\) tại \(x=0\)

Khi: x>0.  \(Max_B=10\)tại \(x=0\)

K chắc

1 tháng 11 2020

Câu 1: 

\(x\left(x-2\right)\left(x+2\right)-\left(x+2\right)\left(x^2-2x+4\right)=4\)

\(\Leftrightarrow x\left(x^2-4\right)-\left(x^3+8\right)=4\)

\(\Leftrightarrow x^3-4x-x^3-8=4\)

\(\Leftrightarrow-4x-8=4\)

\(\Leftrightarrow-4x=12\)

\(\Leftrightarrow x=-3\)

Vậy \(x=-3\)