Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=xy-4y-5x+20\)
\(=x\left(y-5\right)-4\left(y-5\right)\)
\(=\left(x-4\right)\left(y-5\right)\)
Thay \(x=14;y=5,5\) vào biểu thức A ta có :
\(A=\left(14-4\right)\left(5,5-5\right)\)
\(=10.0,5=5\)
Vậy...
b/ \(B=xyz-\left(xy+yz+zx\right)+x+y+z-1\)
\(=xyz-xy-yz-zx+x+y+z-1\)
\(=\left(xyz-xy\right)-\left(yz-y\right)-\left(zx-x\right)+\left(z-1\right)\)
\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)\)
\(=\left(z-1\right)\left(xy-y-x+1\right)\)
\(=\left(z-1\right)\left[y\left(x-1\right)-\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
Thay \(x=9,y=10,z=11\) vào biểu thức B ta có :
\(B=\left(9-1\right)\left(10-1\right)\left(11-1\right)\)
\(=720\)
Vậy....
c/ \(C=x^3-x^2y-xy^2+y^3\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)^2\left(x+y\right)\)
Thay \(x=5,75,y=4,25\) vào biểu thức C ta có :
\(C=\left(5,75-5,25\right)^2\left(5,75+5,25\right)=11,25\)
Vậy..
\(\text{Tìm x:}\)
\(a.x\left(x-1\right)-3x+3x=0\)
\(x\left(x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
\(b.3x\left(x-2\right)+10-5x=0\)
\(3x^2-6x+10-5x=0\)
\(3x^2-11x+10=0\)
\(3x^2-11x=-10\)(bn xem lại đề nhé)
\(c.x^3-5x^2+x-5=0\)
\(x^3-5x^2+x=5\)
\(d.x^4-2x^3+10x^2-20x=0\)
bài 1:phân tích thành phân tử
a> x^2-6x-y^2+9
= (x-3)^2 -y^2
= (x-3 -y) (x-3+y)
b>x^2-xy-8x+8y
= x(x-y) - 8(x-y)
= (x-8) (x-y)
c>25-4x^2-4xy-y^2
= 5^2 - (2x + y)^2
= (5 - 2x -y) (5 +2x+y)
d>xy-xz-y+z
= x(y-z) - (y-z)
= (x-1) (y-z)
e>x^2-xz-yz+2xy+y^2
= (x+y)^2 - z(x+y)
= (x+y-z) (x+y)
g>x^2-4xy+4y^2-z^2-4zt-4t^2
= (x-2y)^2 - (z + 2t)^2
= (x-2y -x-2t) (x-2y + z +2t)
bài 2:tìm X bt
a>x.(x-1)-3x+3x=0
x (x-1) =0
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy x=0 và x=1
b>3x.(x-2)+10-5x=0
3x(x-2) - 5 (x-2)=0
(3x-5) (x-2) =0
\(\Rightarrow\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=5\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}}}\)
c>x^3-5x^2+x-5=0
x^2 (x-5) + (x-5) =0
(x^2 +1)(x-5) =0
\(\Rightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=-1\\x=5\end{cases}\Rightarrow}\hept{\begin{cases}x\in\varphi\\x=5\end{cases}}}\)
Vậy x=5
d>x^4-2x^3+10x^2-20x=0
x^3 (x-2) + 10x(x-2) =0
(x^3 + 10x) (x-2) =0
x(x^2 + 10) (x-2) =0
\(\Rightarrow\hept{\begin{cases}x=0\\x^2+10=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-10\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varphi\\x=2\end{cases}}}}\)
Vậy x=0 và x=2
a,A=x^2 +xy -xz -zy tai x = 6,5 ;y=3,5;z=37,5
A = -310
,B =xy-4y-5x+20 tai x=14;y=5,5
B = 13,5