Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)
Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất
Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(P=2010-\left(x+1\right)^{2008}\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)
\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)
Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)
\(\Rightarrow P=2010-0=2010\)
(Dấu"=" xảy ra <=> \(x=-1\)
Bài 2:
Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)
\(\Rightarrow C=-5\)
Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể
ta có :
\(M=\frac{3\times\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\) nguyên khi n+4 là ước của 17 hay
\(n+4\in\left\{\pm1;\pm17\right\}\Leftrightarrow n\in\left\{-21;-5;-3;13\right\}\)
`A = (3n + 5)/(n + 4)`
`<=> 17/(n + 4)` là nguyên
`=> n + 4 in Ư (17) = {1; -1; 17; -17}`
`=> n = -3; -5; 13; -21`
A = \(\frac{1}{13}\).\(\frac{-39}{x-7}\)= - \(\frac{39}{13\left(x-7\right)}\)= -\(\frac{3}{x-7}\)
A nhỏ nhất khi x - 7 = 3 => x = 10
A lơn nhất khi x - 7 = -3 => x = 4
\(A=\frac{3n^2+25}{n^2+5}=\frac{3n^2+15}{n^2+5}+\frac{10}{n^2+5}=\frac{3\left(n^2+5\right)}{n^2+5}+\frac{10}{n^2+5}=3+\frac{10}{n^2+5}\)
Vì \(n^2\ge0\Rightarrow n^2+5\ge5\Rightarrow\frac{10}{n^2+5}\le2\Rightarrow A=3+\frac{10}{n^2+5}\le5\)
=>Amax=5 <=> n2=0 <=> n=0
Vậy GTLN của A là 5 tại n=0
A=3n2+25/n2+5
a=3(n2+5)+20/n2+5
20
a=3
n2+5
thuộc U của 20 {1,2,4,5,,10,20}
thay n2=12+5=6
thay n2=2
tiep theo thay =4,=5,=10,=20 nha bn