Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kết Quả Bằng 8 Nhưng Ko biếtCách Làm Ai biết cách làm Thì Mong Giúp Đỡ
|x|\(\ge\)0
=>|8-x|\(\ge\)8
=> giá trị nhỏ nhất của A là 8
khi x =0
k minh nha
Có: \(\hept{\begin{cases}\left|x+3\right|\ge x+3\\\left|8-x\right|\ge8-x\end{cases}}\)với mọi x
Do đó, \(\left|x+3\right|+\left|8-x\right|+5\ge\left(x+3\right)+\left(8-x\right)+5=16\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+3\ge0\\8-x\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge-3\\x\le8\end{cases}}\)\(\Rightarrow-3\le x\le8\)
Vậy GTNN của |x + 3| + |8 - x| + 5 là 16 khi \(-3\le x\le8\)
H=/3-x/+/4+x/>=/3-x+x+4/=7. Min=7 khi (3-x)(4+x)>=0 hay -4<=x<=3