Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta có:
- Hệ số góc của tiếp tuyến với đồ thị tại điểm A là: k = y'(0)
Chọn B.
- Ta có:
- Hệ số góc của tiếp tuyến với đồ thị tại điểm A là: k = y'(0)
Chọn B.
Lời giải:
$y'=\frac{-1}{(x+1)^2}$
Giao điểm của đồ thị $y=\frac{x+2}{x+1}$ vớ trục hoành là $(-2,0)$
PTTT của $y=\frac{x+2}{x+1}$ tại điểm tiếp điểm $(-2,0)$ là:
$y=f'(-2)(x+2)+f(-2)=\frac{-1}{(-2+1)^2}(x+2)+0$
$y=-x-2$
Đường tiếp tuyến $y=-x-2$ cắt trục tung tại điểm có tung độ:
$y=-0-2=-2$
- Tập xác định: D = R\{-1}.
- Đạo hàm:
- Đồ thị hàm số cắt trục tung tại điểm A(0; -1).
- Hệ số góc của tiếp tuyến tại điểm A là: k = y’(0) = 2.
Chọn B.
Tập xác định: D = R \{1}.
- Đạo hàm:
- Đồ thị hàm số cắt trục tung tại điểm A(0; -1)
⇒ y'(0) = 2.
Chọn B.
Thay tọa độ A vào ta được: \(\dfrac{b}{-1}=-1\Rightarrow b=1\)
\(\Rightarrow y=\dfrac{ax+1}{x-1}\Rightarrow y'=\dfrac{-a-1}{\left(x-1\right)^2}\)
\(y'\left(0\right)=-3\Leftrightarrow\dfrac{-a-1}{\left(0-1\right)^2}=-3\Leftrightarrow-a-1=-3\)
\(\Rightarrow a=2\)