K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\left(ĐKXĐ:x\ne\pm2\right)\)

\(\Leftrightarrow\dfrac{\left(y-1\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}-\dfrac{5\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}-\dfrac{12}{\left(y-2\right)\left(y+2\right)}-\dfrac{\left(y-2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}=0\)

\(\Leftrightarrow\dfrac{y^2+y-2}{\left(y-2\right)\left(y+2\right)}-\dfrac{5y-10}{\left(y-2\right)\left(y+2\right)}-\dfrac{12}{\left(y-2\right)\left(y+2\right)}-\dfrac{y^2-4}{\left(y-2\right)\left(y+2\right)}=0\)

\(\Leftrightarrow\dfrac{y^2+y-2-5y+10-12-y^2+4}{\left(y-2\right)\left(y+2\right)}=0\)

\(\Rightarrow-4y=0\)

\(\Leftrightarrow y=0\left(tm\right)\)

\(b,\dfrac{1}{4z^2-12z+9}-\dfrac{3}{9-4z^2}=\dfrac{4}{4z^2+12z+9}\left(ĐKXĐ:z\ne\pm\dfrac{3}{2}\right)\)

\(\Leftrightarrow\dfrac{1}{\left(2z-3\right)^2}+\dfrac{3}{\left(2z-3\right)\left(2z+3\right)}-\dfrac{4}{\left(2z+3\right)^2}=0\)

\(⇔\dfrac{\left(2z+3\right)^2}{\left(2z-3\right)^2\left(2z+3\right)^2}+\dfrac{3\left(2z-3\right)\left(2z+3\right)}{\left(2z-3\right)^2\left(2z+3\right)^2}-\dfrac{4\left(2z-3\right)^2}{\left(2z-3\right)^2\left(2z+3\right)^2}=0\)

\(\Leftrightarrow\dfrac{4z^2+12z+9}{\left(2z-3\right)^2\left(2z+3\right)^2}+\dfrac{12z^2-27}{\left(2z-3\right)^2\left(2z+3\right)^2}-\dfrac{16z^2-48z+36}{\left(2z-3\right)^2\left(2z+3\right)^2}=0\)

\(\Leftrightarrow\dfrac{4z^2+12z+9+12z^2-27-16z^2+48z-36}{\left(2z-3\right)^2\left(2z+3\right)^2}=0\)

\(\Rightarrow60z-54=0\)

\(\Leftrightarrow60z=54\)

\(\Leftrightarrow z=\dfrac{9}{10}\left(tm\right).\)

25 tháng 2 2023

\(a,\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\left(dkxd:y\ne\pm2\right)\)

\(\Leftrightarrow\dfrac{\left(y-1\right)\left(y+2\right)-5\left(y-2\right)-12-y^2+4}{y^2-4}=0\)
\(\Leftrightarrow y^2+2y-y-2-5y+10-12-y^2+4=0\)

\(\Leftrightarrow-4y=0\)

\(\Leftrightarrow y=0\left(tmdk\right)\)

Vậy \(S=\left\{0\right\}\)

\(b,\dfrac{1}{4z^2-12z+9}-\dfrac{3}{9-4z^2}=\dfrac{4}{4z^2+12z+9}\)

\(\Leftrightarrow\dfrac{1}{\left(2z-3\right)^2}-\dfrac{3}{\left(2z-3\right)\left(2z+3\right)}=\dfrac{4}{\left(2z+3\right)^2}\left(dkxd:z\ne\pm\dfrac{3}{2}\right)\)

\(\Leftrightarrow\left(2z+3\right)^2-3\left(4z^2-9\right)-4\left(2z-3\right)^2=0\)

\(\Leftrightarrow4z^2+12z+9-12z^2+27-4\left(4z^2-12z+9\right)=0\)

\(\Leftrightarrow4z^2+12z+9-12z^2+27-16z^2+48z-36=0\)

\(\Leftrightarrow-24z^2+60z=0\)

\(\Leftrightarrow-12z\left(2z-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-12z=0\\2z-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}z=0\left(tmdk\right)\\z=\dfrac{5}{2}\left(tmdk\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;\dfrac{5}{2}\right\}\)

b: ĐKXD: x<>1/5; x<>3

PT\(\Leftrightarrow\dfrac{3}{5x-1}-\dfrac{2}{x-3}=\dfrac{-4}{\left(5x-1\right)\left(x-3\right)}\)

=>3x-9-10x+2=-4

=>-7x-7=-4

=>-7x=3

=>x=-3/7

a: ĐKXĐ: x<>2/3; x<>-2/3

\(PT\Leftrightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x\)

=>9x^2+12x+4-18x+12-9x=0

=>9x^2-15x+16=0

=>\(x\in\varnothing\)

c: ĐKXĐ: x<>1/4; x<>-1/4

PT =>-3(4x+1)=2(4x-1)-6x-8

=>-12x-3=8x-2-6x-8

=>-12x-3=2x-10

=>-14x=-7

=>x=1/2

d: ĐKXĐ: x<>0; x<>2

\(\Leftrightarrow\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)

=>2(5-x)+7(x-2)=4(x-1)+x

=>10-2x+7x-14=4x-4+x

=>5x-4=5x-4

=>0x=0(luôn đung)

Vậy: S=R\{0;2}

e: DKXĐ: x<>0

PT \(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=>x(x^3+1-x^3+1)=3

=>2x=3

=>x=3/2

c: \(\Leftrightarrow x\left(x+3\right)=3+x-3\)

\(\Leftrightarrow x^2+3x-x=0\)

=>x(x+2)=0

=>x=0(loại) hoặc x=-2(nhận)

d: \(\Leftrightarrow\left(x+2\right)\left(x+3\right)+\left(x-2\right)\left(x-3\right)=2x^2+12\)

\(\Leftrightarrow2x^2+12=2x^2+12\)

=>0x=0(luôn đúng)

e: \(\Leftrightarrow x\left(x-3\right)+3\left(x-2\right)=3x-20\)

\(\Leftrightarrow x^2-6-3x+20=0\)

\(\Leftrightarrow x^2-3x+14=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot14=9-56< 0\)

Do đó: Phương trình vô nghiệm

1 tháng 3 2022

Gợi ý: 
ĐKXĐ : Mẫu ≠ 0, từ đó bạn tự xác định
c) Tách \(^{^2x}\)- 3 thành x (x-3) -> quy đồng mẫu-> rút gọn -> tự làm
d) Tách \(^{^2x}\)-9 thành hằng đẳng thức -> như trên
e) Tách \(^{^2x}\)- 5 thành hằng đẳng thức -> như trên
f) Quy đồng mẫu, quá dễ nên không nói thêm
g) Tách \(^{^2x}\)- 1 thành hằng đẳng thức -> như trên

29 tháng 4 2023

Điều kiện xác định :

\(\left\{{}\begin{matrix}2x-2\ne0\\x-1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x\ne2\\x\ne1\end{matrix}\right.\)

\(\Leftrightarrow x\ne1\)

\(\dfrac{2x+1}{2x-2}=\dfrac{2}{x-1}\)

\(\Leftrightarrow\dfrac{2x+1}{2x-2}-\dfrac{2}{x-1}=0\)

\(\Leftrightarrow\dfrac{2x+1}{2\left(x-1\right)}-\dfrac{2}{x-1}=0\)

\(\Leftrightarrow\dfrac{2x+1-2.2}{2\left(x-1\right)}=0\)

\(\Leftrightarrow2x+1-4=0\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow x=\dfrac{3}{2}\left(tmdk\right)\)

Vậy \(S=\left\{\dfrac{3}{2}\right\}\)

DKXĐ: x<>1

PT =>2x+1=4

=>2x=3

=>x=3/2

23 tháng 4 2023

ĐKXĐ: 3 - x ≠ 0 ⇔ x ≠ 3

Câu 3: 

a: Ta có: \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)\)

\(=6x^2-2x-6x^2-2x+18x+6\)

=14x+6

b: Ta có: \(2x\left(x+7\right)-3x\left(x+1\right)\)

\(=2x^2+14x-3x^2-3x\)

\(=-x^2+11x\)

Câu 2: 

a: Ta có: \(\left(-8x^5+12x^3-16x^2\right):4x^2\)

\(=-8x^5:4x^2+12x^3:4x^2-16x^2:4x^2\)

\(=-2x^3+3x-4\)

b: Ta có: \(\left(12x^3y^3-18x^2y+9xy^2\right):6xy\)

\(=12x^3y^3:6xy-18x^2y:6xy+9xy^2:6xy\)

\(=2x^2y^2-3x+\dfrac{3}{2}y\)

c: Ta có: \(\dfrac{x^3-11x^2+27x-9}{x-3}\)

\(=\dfrac{x^3-3x^2-8x^2+24x+3x-9}{x-3}\)

\(=x^2-8x+3\)

d: Ta có: \(\dfrac{6x^4-13x^3+7x^2-x-5}{3x+1}\)

\(=\dfrac{6x^4+2x^3-15x^3-5x^2+12x^2+4x-5x-\dfrac{5}{3}-\dfrac{10}{3}}{3x+1}\)

\(=2x^3-5x^2+4x-\dfrac{5}{3}-\dfrac{\dfrac{10}{3}}{3x+1}\)

 

11 tháng 9 2021

cho tam giác abc có ba góc nhọn (AB<AC) gọi ah là đường cao và M, N, P lần lượt là trung điểm AB,AC và BC. Gọi d là đối xứng của h qua m

a)c/m tứ giác DAHB là hcn

b) tìm đk của tam giác của ABC để AMPN là hcn 

   Đề nè mng:<<

NV
11 tháng 9 2021

a.

Ta có D đối xứng H qua M \(\Rightarrow M\) là trung điểm DH

Mà M là trung điểm AB theo giả thiết

\(\Rightarrow\) Tứ giác DAHB là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường)

Lại có \(AH\perp BC\) (gt) \(\Rightarrow\widehat{AHB}=90^0\)

\(\Rightarrow\) DAHB là hình chữ nhật (hbh có 1 góc vuông)

b.

N là trung điểm AC, P là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}NP=\dfrac{1}{2}AB\\NP||AB\end{matrix}\right.\)

M là trung điểm AB \(\Rightarrow AM=\dfrac{1}{2}AB\) \(\Rightarrow\left\{{}\begin{matrix}NP=AM\\NP||AM\end{matrix}\right.\)

\(\Rightarrow\) Tứ giác AMPN là hình bình hành (cặp cạnh đối song song và bằng nhau)

Để AMPN là hình chữ nhật \(\Rightarrow\widehat{BAC}=90^0\)

\(\Rightarrow\) Tam giác ABC là tam giác vuông tại A

6 tháng 9 2021

\(\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)=1\)

\(\Leftrightarrow\left(-2+x^2\right)^5=1\)

\(\Leftrightarrow-2+x^2=1\)

\(\Leftrightarrow x^2=3\Leftrightarrow x=\pm\sqrt{3}\)