Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình có nghĩ ra cách này mọi người xem giúp mình với
f(x) = \(ax^2+bx+c\)
Ta có f(0) = 2 => c = 2
Ta đặt Q(x) = \(ax^2+bx+c-2020\)
và G(x) = \(ax^2+bx+c+2021\)
f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư
\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)
Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0
hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)
G(x) chia cho x + 1 số dư
\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)
Mà G(x) chia hết cho x + 1 nên \(R_2\)=0
hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)
Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
\(f\left(x\right):\left(x-a\right)\) dư r1
\(\Leftrightarrow f\left(x\right)=\left(x-a\right)\cdot a\left(x\right)+r_1\\ \Leftrightarrow f\left(a\right)=r_1\)
Vì \(\left(x-a\right)\left(x-b\right)\) là đa thức bậc 2 nên có dư bậc 1
Gọi dư của \(f\left(x\right):\left(x-a\right)\left(x-b\right)\) là \(cx+d\)
\(\Leftrightarrow f\left(x\right)=\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+cx+d\\ \Leftrightarrow f\left(a\right)=ac+d=r_1\left(1\right)\\ f\left(x\right)=\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+cx+d\\ =\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+c\left(x-b\right)+bc+d\\ =\left(x-b\right)\left[\left(x-a\right)\cdot c\left(x\right)+c\right]+bc+d\)
Vì \(f\left(x\right):\left(x-b\right)\) dư r2 nên \(bc+d=r_2\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}bc+d=r_2\\ac+d=r_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c\left(a-b\right)=r_1-r_2\\ac+d=r_1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{r_1-r_2}{a-b}\\d=r_1-\dfrac{a\left(r_1-r_2\right)}{a-b}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{r_1-r_2}{a-b}\\d=\dfrac{ar_2-br_1}{a-b}\end{matrix}\right.\)
Vậy đa thức dư là \(\dfrac{r_1-r_2}{a-b}x+\dfrac{ar_2-br_1}{a-b}\)
Ta có \(f\left(1\right)+f\left(10\right)+f\left(100\right)=1+a+b+100+10a+b+10000+100a+b\)
\(=10101+111a+3b\)
Tương tự \(G\left(1\right)+G\left(10\right)+G\left(100\right)=10101+111m+3n\)
Từ đây ta có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)
Xét \(h\left(x\right)=f\left(x\right)-G\left(x\right)\) , khi đó \(h\left(x_0\right)=f\left(x_0\right)-G\left(x_0\right)\)
\(=ax_0+b-mx_0-n=\left(a-m\right)x_0+\left(b-n\right)\)
Để \(h\left(x_0\right)=0\Rightarrow\left(a-m\right)x_0+\left(b-n\right)=0\Rightarrow3\left(a-m\right)x_0+3\left(b-n\right)=0\)
Ta đã có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)
Vậy nên \(3x_0=111\Rightarrow x_0=37\)
Tóm lại \(f\left(37\right)=G\left(37\right)\)
Hướng dẫn: đặt \(A=\dfrac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Khi đó \(F-A=x-y+y-z+z-x=0\Rightarrow F=A\)
\(\Rightarrow2F=F+A=\sum\dfrac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x+y\right)^2\left(x^2+y^2\right)}{4\left(x^2+y^2\right)\left(x+y\right)}\)
\(\Rightarrow2F\ge\dfrac{x+y+z}{2}\Rightarrow F\ge\dfrac{x+y+z}{4}\)
\((x^{2}-x+1)^{2}+(x-2)^{2}=x^{4}+x^{2}+1-2x^{3}-2x+2x^{2}+x^{2}-4x+4=x^{4}-2x^{3}+4x^{2}-6x+5\).Chia cho \(x^{2}+4\)
ta có:\((x^{2}+4)(x^{2}-2x)+2x+5=x^{4}-2x^{3}+4x^{2}-6x+5\)
Biểu thức viết đầy đủ là:\((x^{2}-x+1)^{2}+(x-2)^{2}=(x^{2}+4)(x^{2}-2x)+2x+5\)
mình ko hiểu