Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\dfrac{\sqrt{x}-8+5}{\sqrt{x}-8}=1+\dfrac{5}{\sqrt{x}-8}\in Z\\ \Leftrightarrow\sqrt{x}-8\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{3;7;9;13\right\}\\ \Leftrightarrow x\in\left\{9;49;81;169\right\}\left(tm\right)\\ b,=\dfrac{\sqrt{x}-2+7}{\sqrt{x}-2}=1+\dfrac{7}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(7\right)=\left\{-1;1;7\right\}\left(\sqrt{x}-2>-2\right)\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;9\right\}\\ \Leftrightarrow x\in\left\{1;9;81\right\}\\ c,=\dfrac{2\left(\sqrt{x}+3\right)+2}{\sqrt{x}+3}=2+\dfrac{2}{\sqrt{x}+3}\in Z\\ \Leftrightarrow\sqrt{x}+3\inƯ\left(2\right)=\varnothing\left(\sqrt{x}+3>3\right)\\ \Leftrightarrow x\in\varnothing\)
a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi 2x-1=0
\(\Leftrightarrow2x=1\)
hay \(x=\dfrac{1}{2}\)
Vậy: Giá trị lớn nhất của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\dfrac{1}{2}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)
mà \(\sqrt{x}-3⋮\sqrt{x}-3\)
nên \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\inƯ\left(4\right)\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)
mà \(\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}\in\left\{1;2;4;5;7\right\}\)
hay \(x\in\left\{1;4;16;25;49\right\}\)(nhận)
Vậy: Để A nguyên thì \(x\in\left\{1;4;16;25;49\right\}\)
Ta có: \(A=\dfrac{\sqrt{x}-4}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3-7}{\sqrt{x}+3}=1-\dfrac{7}{\sqrt{x}+3}\) (ĐKXĐ: \(x\ge0\))
Để \(A\in Z\) thì \(\sqrt{x}+3\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x=16\) (TMĐK)
Vậy \(x=16\) thì \(A\in Z\)
\(A=\dfrac{\sqrt{x}-4}{\sqrt{x}+3}\)
\(A=1-\dfrac{7}{\sqrt{x}+3}\)
Để A nguyên thì \(\sqrt{x}+3\) phải là ước của 7 .
\(\sqrt{x}+3=1;-1;7;-7\)
\(\Rightarrow16\)
a: Để D là số nguyên thì \(3\sqrt{x}+5⋮2\sqrt{x}-1\)
\(\Leftrightarrow6\sqrt{x}+10⋮2\sqrt{x}-1\)
\(\Leftrightarrow2\sqrt{x}-1\in\left\{1;-1;13;-13\right\}\)
hay \(x\in\left\{1;0;49\right\}\)
b: Để E là số nguyên thì \(\sqrt{x}+2\inƯ\left(10\right)\)
\(\Leftrightarrow\sqrt{x}+2\in\left\{2;5;10\right\}\)
hay \(x\in\left\{0;9;64\right\}\)
c: Để F là số nguyên thì \(\sqrt{x}-3⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1-4⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{0;1;9\right\}\)
d: Để G là số nguyên thì \(3\sqrt{x}-6+5⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{9;1;49\right\}\)