K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

.

giúp mk đi. Mk đag cần gấp

Ta có: \(2x^2+2y^2-x-y-2xy+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+y^2-2xy\right)+\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}^2\right)=0\)

Nhận xét \(\left(x-y\right)^2\ge0;\left(x-\frac{1}{2}\right)^2\ge0;\left(y-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-\frac{1}{2}\right)^2=0\\\left(y-\frac{1}{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Leftrightarrow}x=y=\frac{1}{2}}\)

NV
8 tháng 1 2023

Từ giả thiết:

\(29\le y^2+2xy+4x\le y^2+2xy+x^2+4\)

\(\Rightarrow\left(x+y\right)^2\ge25\Rightarrow x+y\ge5\)

Đặt \(P=2x+3y+\dfrac{4}{x}+\dfrac{18}{y}\)

\(\Rightarrow P=x+y+\left(x+\dfrac{4}{x}\right)+2\left(y+\dfrac{9}{y}\right)\ge5+2\sqrt{\dfrac{4x}{x}}+2.2\sqrt{\dfrac{9y}{y}}=21\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;3\right)\)

5 tháng 7 2019

\(4x^2+4x+y^2-6y=24\)

\(\Leftrightarrow\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)=34\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=34=3^2+5^2\)

\(TH1:\hept{\begin{cases}\left(2x+1\right)^2=3^2\\\left(y-3\right)^2=5^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=8\end{cases}}\)

\(TH2:\hept{\begin{cases}\left(2x+1\right)^2=5^2\\\left(y-3\right)^2=3^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}\)

Vay.....

\(4x^2+4x+y^2-6y=24\)

\(\Leftrightarrow4x^2+4x+y^2-6y-24=0\)

\(\Leftrightarrow\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)-34=0\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=34\)

Mà \(34=3^2+5^2=\left(-3\right)^2+\left(-5\right)^2\)

Vì là nghiệm nguyên dương nên:

\(\left(2x+1\right)^2+\left(y-3\right)^2=3^2+5^2\)\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\orbr{\begin{cases}\\\end{cases}}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x+1=3\\y-3=5\end{cases}}\)hoặc     \(\orbr{\begin{cases}2x+1=5\\y-3=3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x=2\\y=8\end{cases}}\)         hoặc     \(\orbr{\begin{cases}2x=4\\y=6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\y=8\end{cases}}\)           hoặc      \(\orbr{\begin{cases}x=2\\y=6\end{cases}}\)

Vậy các cặp số (x;y) là: (1;8);(2;6)

5 tháng 7 2019

Ta có: 

\(x^2-6x+y^2-10y=27\)

<=> \(x^2-2.y.3+9+y^2-2.y.5+25-9-25=27\)

<=> \(\left(x-3\right)^2+\left(y-5\right)^2=61\)

<=> \(\left(x-3\right)^2+\left(y-5\right)^2=5^2+6^2\)

Do x, y nguyên dương 

=> x-3 >-3; y-5 >-5 

TH1: \(\hept{\begin{cases}\left(x-3\right)^2=5^2\\\left(y-5\right)^2=6^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=5\\y-5=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=11\end{cases}}\)(tm)

TH2: \(\hept{\begin{cases}\left(x-3\right)^2=6^2\\\left(y-5\right)^2=5^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=6\\y-5=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=9\\y=10\end{cases}}\)(tm)