K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

Chứng minh cái BĐT phụ này là xong: \(\frac{x}{3-x}\ge\frac{3}{4}x-\frac{1}{4}\) (0 < x < 3)

\(\Leftrightarrow\frac{3\left(x-1\right)^2}{4\left(3-x\right)}\ge0\) (luôn đúng với 0 < x < 3)

Làm nốt.

Tham khảo link này nha

https://olm.vn/hoi-dap/detail/243232541423.htm

8 tháng 3 2017

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\\\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\ge3\sqrt[3]{\frac{1}{x^3y^3z^3}}=\frac{3}{xyz}\end{cases}}\)

Nhân theo từng vế 

\(\Rightarrow Q\ge3xyz.\frac{3}{xyz}=9\)

Vậy  \(Q_{min}=9\)

NV
18 tháng 9 2020

Ta sẽ chứng minh: \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\) với a;b dương

Thật vậy, BĐT tương đương:

\(3a^3\ge\left(2a-b\right)\left(a^2+ab+b^2\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Áp dụng: \(\Rightarrow S\ge\frac{2x-y}{3}+\frac{2y-z}{3}+\frac{2z-x}{3}=\frac{x+y+z}{3}=3\)

\(S_{min}=3\) khi \(x=y=z=3\)

NV
12 tháng 6 2020

Từ hàng 2 rút gọn xuống hàng 3 OK rồi đúng ko?

Sử dụng BĐT: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)

\(\Rightarrow-\left(ab+bc+ca\right)\ge-\frac{1}{3}\left(a+b+c\right)^2\)

\(\Rightarrow-\frac{1}{2}\left(ab+bc+ca\right)\ge-\frac{1}{6}\left(a+b+c\right)^2\)

NV
12 tháng 6 2020

\(S=x-\frac{xy^2}{1+y^2}+y-\frac{yz^2}{1+z^2}+z-\frac{zx^2}{1+x^2}\)

\(S\ge x+y+z-\frac{xy^2}{2y}-\frac{yz^2}{2z}-\frac{zx^2}{2x}\)

\(S\ge3-\frac{1}{2}\left(xy+yz+zx\right)\ge3-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)

\(S_{min}=\frac{3}{2}\) khi \(x=y=z=1\)

NV
27 tháng 10 2019

Vấn đề duy nhất của bài này là đánh giá cụm \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\)

Trước hết, ta chứng minh bổ đề sau:

Với hai dãy số dương \(x\ge y\ge z\)\(a\ge b\ge c\) ta luôn có: \(ax+by+cz\ge bx+cy+az\)

\(\Leftrightarrow\left(a-b\right)x+\left(b-c\right)y+\left(c-a\right)z\ge0\)

\(\Leftrightarrow\left(a-b\right)x-\left(a-b\right)y+\left(a-c\right)y-\left(a-c\right)z\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(x-y\right)+\left(a-c\right)\left(y-z\right)\ge0\) (luôn đúng)

Không mất tính tổng quát, giả sử \(x\ge y\ge z\Rightarrow\left\{{}\begin{matrix}x^3\ge y^3\ge z^3\\\frac{1}{y^2+z^2}\ge\frac{1}{z^2+x^2}\ge\frac{1}{x^2+y^2}\end{matrix}\right.\)

Áp dụng bổ đề ta có:

\(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{y^3}{y^2+z^2}+\frac{z^3}{z^3+x^2}+\frac{x^3}{x^2+y^2}\)

Mặt khác: \(\frac{x^3}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{1}{2}y\)

Tương tự và cộng lại: \(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{x^2+z^2}\ge\frac{1}{2}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{1}{3}\left(x+y+z\right)^2+\frac{1}{2}\left(x+y+z\right)-\frac{7}{6}\left(x+y+z\right)\)

\(P\ge\frac{1}{3}\left(x+y+z\right)^2-\frac{2}{3}\left(x+y+z\right)+\frac{1}{3}-\frac{1}{3}\)

\(P\ge\frac{1}{3}\left(x+y+z-1\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)

\(P_{min}=-\frac{1}{3}\) khi \(x=y=z=\frac{1}{3}\)

3 tháng 10 2019

Dễ dàng chứng minh được \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{x+y+z}{2}\)(khi nào rảnh em gõ ha! Giờ lười lắm:v)

Do đó \(P\ge x^2+y^2+z^2+\frac{x+y+z}{2}-\frac{7}{6}\left(x+y+z\right)\)

\(\ge\frac{\left(x+y+z\right)^2}{3}-\frac{2}{3}\left(x+y+z\right)=\frac{t^2-2t}{3}\) (đặt t = x+y+z)

\(=\frac{\left(t^2-2t+1\right)-1}{3}=\frac{\left(t-1\right)^2-1}{3}\ge-\frac{1}{3}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=y=z\\t=x+y+z=1\end{matrix}\right.\Leftrightarrow x=y=z=\frac{1}{3}\)

P/s: Is that true?

20 tháng 12 2017

Bạn ơi đề hình như là tìm GTLN 

Xét x/x+1 < = x/x+x+y+z = x/(x+y)+(x+z)

Áp dụng bđt 1/a+b < = 1/4.(1/a + 1/b) với a,b > 0 thì

x/x+1 < = x/4.(1/x+y + 1/x+z) = 1/4.(x/x+y + x/x+z)

Tương tự : y/y+1 < =  1/4.(y/x+y + y/y+z) ; z/z+! < = 1/4.(z/z+x + z/y+z)

=> M < = 1/4.(x/x+y + y/x+y + y/y+z + z/y+z + z/x+z + x/z+x) = 1/4.(1+1+1) = 3/4

Dấu "=" xảy ra <=> x+y+z = 1 và x=y=z <=> x=y=z=1/3

Vậy GTLN của M = 3/4 <=> x=y=z=1/3

k mk nha

30 tháng 5 2020

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)