K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

Ta có

\(C=\frac{12-3x}{4-x}+\frac{10}{4-x}=3+\frac{10}{4-x}\)

C lớn nhất <=> \(\frac{10}{4-x}\) lớn nhất <=> 4 - x bé nhất >0

Mà x nguyên

=>x=1

Thay vào ta có \(C=\frac{22-3.1}{4-1}=\frac{19}{4}\)

Vậy MAX(C)=19/4 khi x=1

30 tháng 7 2016

C=\(\frac{22-3x}{4-x}=3+\frac{10}{4-x}\)để C lớn nhất thì \(\frac{10}{4-x}\) lớn nhất

mà x nguyên=> 4-x=1=> x=3

vậy GTLN của C=13 khi x=1

30 tháng 7 2016

Điều kiện : \(x\ne4\)

Biểu diễn : \(C=\frac{22-3x}{4-x}=\frac{3\left(4-x\right)+10}{4-x}=\frac{10}{4-x}+3\)

Ta có C đạt giá trị lớn nhất \(\Leftrightarrow\frac{10}{4-x}\)đạt giá trị lớn nhất \(\Leftrightarrow4-x\)đạt giá trị nhỏ nhất

Đến đây ta xét các trường hợp :

1. Với \(x>4\Rightarrow4-x< 0\Rightarrow\frac{10}{4-x}< 0\)

2. Với \(0\le x\le3\) \(\Rightarrow\frac{5}{2}\le\frac{10}{4-x}\le10\)

3. Với \(x< 0\), xét  \(f\left(x\right)=4-x\) có giá trị càng tăng khi x càng giảm (x < 0) , do đó f(x) nhỏ nhất tại x = -1

\(\Rightarrow\frac{10}{4-x}=2\)

So sánh các trường hợp , được \(MaxC=13\Leftrightarrow x=3\)

30 tháng 7 2016

giá trị lớn nhất là 13 tại x = 3

30 tháng 7 2016

Ta có: 4 - x \(\ne\)0  \(\Leftrightarrow\) x \(\ne\)4

C = \(\frac{12-3x+10}{4-x}\)=\(\frac{3\left(4-x\right)}{4-x}+\frac{10}{4-x}\)\(3+\frac{10}{4-x}\)

Để C đạt GTLN thì \(\frac{10}{4-x}\)phải là GTLN, mà 10 là số nguyên dương nên 4 - x phải nguyên dương nhỏ nhất.

\(\Rightarrow\)4 - x = 1

\(\Leftrightarrow\)x = 3

Khi do: C = 13

Vậy GTLN của C =13 khi x = 3

24 tháng 2 2020

\(M=\frac{14-x}{4-x}=\frac{10+4-x}{4-x}=1+\frac{10}{4-x}\)

M lớn nhất khi \(\frac{10}{4-x}\)lớn nhất (1)

Xét \(x< 4\)thì \(\frac{10}{4-x}>0\)

      \(x>4\)thì \(\frac{10}{4-x}< 0\)

Vậy ta chỉ quan tâm x < 4 hay 4 - x > 0 (2)

Từ (1) suy ra 4 - x có GTNN  (3)

Từ (2), (3) kết hợp với x nguyên suy ra 4 - x = 1 nên x = 3

Vậy GTLN của M là 11 khi và chỉ khi x = 3

24 tháng 2 2020

\(A=\frac{14-x}{4-x}\)

 \(A=\frac{10+4-x}{4-x}\)

\(A=\frac{10}{4-x}+1\)

Để A lớn nhất thì  \(\frac{10}{4-x}\)lớn nhất

điều này xảy ra khi 4-x là số nguyên dương nhỏ nhất

tức là 4-x=1

x=3

Khi đó A=\(\frac{14-3}{4-3}=11\)

Vậy GTLN của A là 11 khi x=3

19 tháng 5 2021

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

19 tháng 5 2021

Mình làm sai câu a...

Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên

Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)

Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).

20 tháng 3 2017

         Để A đạt giá trị nhỏ nhất thì 4-x phải nhỏ nhất

\(\Rightarrow\frac{5}{4-x}\le5\Rightarrow4-x\)đạt giá trị lớn nhất là 5

\(\Rightarrow5:\left(4-x\right)=5\)

\(\Rightarrow4-x=1\Rightarrow x=3\)

vậy x=3 để A đạt giá trị lớn nhất 

đây là cách của mk ;khi bạn làm bài sửa ngôn từ cho hay tí là ok 

6 tháng 1 2020

1) Tìm x 

a) |3x - 1| + |1 - 3x| = 6

<=> |3x - 1| + |3x - 1| = 6

<=> 2|3x - 1| = 6

=> |3x - 1| = 3

=> \(\orbr{\begin{cases}3x-1=3\\3x-1=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{2}{3}\end{cases}}}\)

b) |2x - 1| + |1 - 2x| = 8

<=> |2x - 1| + |2x - 1| = 8

<=> 2|2x - 1| = 8 

=> |2x - 1| = 4

=> \(\orbr{\begin{cases}2x-1=4\\2x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}}\)