K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

a.

\(\dfrac{2a^2-3a-2}{a^2-4}=2\)

\(\Leftrightarrow\dfrac{2a^2-4a+a-2}{\left(a-2\right)\left(a+2\right)}=2\)

\(\Leftrightarrow\dfrac{\left(2a^2-4a\right)+\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=2\)

\(\Leftrightarrow\dfrac{2a\left(a-2\right)+\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=2\)

\(\Leftrightarrow\dfrac{\left(2a+1\right)\left(a-2\right)}{\left(a-2\right)\left(a+1\right)}=2\)

\(\Leftrightarrow\dfrac{2a+1}{a+1}=2\)

\(\Leftrightarrow\dfrac{2a+1}{a+1}=\dfrac{2\left(a+1\right)}{a+1}\)

\(\Leftrightarrow2a+1=2a+2\)

Suy ra pt vô nghiệm

9 tháng 2 2018

a) \(\dfrac{2a^{2^{ }}-3a-2}{a^2-4}\)=2

<=> \(\dfrac{2a^{2^{ }}-3a-2}{\left(a-2\right)\left(a+2\right)}\)=2 (1)

ĐKXĐ: a-2 #0 => a#2

a+2#0 -> a#-2

(1) <=> \(\dfrac{2a^{2^{ }}-3a-2}{\left(a-2\right)\left(a+2\right)}\)= \(\dfrac{2\left(a^{^2}-4\right)}{\left(a-2\right)\left(a+2\right)}\)

=> 2a2 - 3a - 2 = 2a2 - 8

<=> 2a2 - 3a - 2 - 2a2 + 8 = 0

<=> -3a + 6 = 0

<=> -3 ( a-2)

<=> -3 = 0 ( vô no )

a-2 = 0 => a = 2

Vậy với A=2 thì biểu thức có giá trị = 2

23 tháng 12 2022

2.

\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)

ĐKXĐ là :

\(a\ne0;-3;-2\)

Vs a = 1 ta có:

=> P=3

1.

\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)

25 tháng 2 2020

\(\frac{10}{3}-\frac{3a-1}{4a+12}-\frac{7a+2}{6a+18}=2\)

(ĐK a\(\ne-3\))

\(\Leftrightarrow40\left(a+3\right)-3\left(3a-1\right)-2\left(7a+2\right)=24\left(a+3\right)\)

\(\Leftrightarrow40a+120-9a+3-14a-4=24a+72\)

\(\Leftrightarrow7a=47\)

\(\Leftrightarrow a=\frac{47}{7}\)

25 tháng 2 2020

\(\frac{10}{3}-\frac{3a-1}{4a+12}-\frac{7a+2}{6a+18}=2\)

\(\frac{10}{3}-\frac{3a-1}{4\left(a+3\right)}-\frac{7a+2}{6\left(a+3\right)}=2\)

\(40\left(a+3\right)-3\left(a-1\right)-2\left(7a+2\right)=24\left(a+3\right)\)

\(17a+119=24a+27\)

\(17a-24a=72-119\)

\(-7a=-47\)

\(a=\frac{47}{7}\)

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) ĐKXĐ: $a\neq 0; a\neq 3; a\neq 2$

\(P=\left[\frac{a}{3a(a-2)}-\frac{2a-3}{a^2(a-2)}\right].\frac{6a}{(a-3)^2}=\left[\frac{a^2}{3a^2(a-2)}-\frac{6a-9}{3a^2(a-2)}\right].\frac{6a}{(a-3)^2}=\frac{a^2-6a+9}{3a^2(a-2)}.\frac{6a}{(a-3)^2}=\frac{(a-3)^2}{3a^2(a-2)}.\frac{6a}{(a-3)^2}=\frac{2}{a(a-2)}\)

b) 

Để $P>0\Leftrightarrow \frac{2}{a(a-2)}>0\Leftrightarrow a(a-2)>0$

$\Leftrightarrow a>2$ hoặc $a< 0$

Kết hợp với ĐKXĐ suy ra $(a>2; a\neq 3)$ hoặc $a< 0$

ĐKXĐ: \(a\notin\left\{0;2\right\}\)

a) Ta có: \(P=\left(\dfrac{a}{3a^2-6a}+\dfrac{2a-3}{2a^2-a^3}\right)\cdot\dfrac{6a}{a^2-6a+9}\)

\(=\left(\dfrac{a}{3a\left(a-2\right)}+\dfrac{2a-3}{a^2\left(2-a\right)}\right)\cdot\dfrac{6a}{a^2-6a+9}\)

\(=\left(\dfrac{a^2}{3a^2\cdot\left(a-2\right)}-\dfrac{3\left(2a-3\right)}{3a^2\cdot\left(a-2\right)}\right)\cdot\dfrac{6a}{\left(a-3\right)^2}\)

\(=\dfrac{a^2-6a+9}{3a^2\cdot\left(a-2\right)}\cdot\dfrac{6a}{\left(a-3\right)^2}\)

\(=\dfrac{\left(a-3\right)^2}{3a^2\left(a-2\right)}\cdot\dfrac{6a}{\left(a-3\right)^2}\)

\(=\dfrac{2}{a\left(a-2\right)}\)

b) Để P>0 thì \(\dfrac{2}{a\left(a-2\right)}>0\)

mà 2>0

nên \(a\left(a-2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a-2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a>2\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)

Vậy: Để P>0 thì \(\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)