K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

 2x^2 + y^2 + 3xy + 3x + 2y + 2 = 0 

<=> 16x^2 + 8y^2 + 24xy + 24x + 16y + 16 = 0 

<=> (4x)^2 + 24x(y+1) + 8y^2 + 16y + 16 = 0 

<=> (4x)^2 + 24x(y+1) + [3(y + 1)]^2 - [3(y + 1)]^2 + 8y^2 + 16y + 16 = 0 

<=> (4x + 3y + 3)^2 - 9y^2 - 18y - 9 + 8y^2 + 16y + 16 = 0 

<=> (4x + 3y + 3)^2 - y^2 - 2y - 1 + 8 = 0 

<=> (4x + 3y + 3)^2 - (y + 1)^2 = - 8 

<=> (y + 1)^2 - (4x + 3y + 3)^2 = 8 

<=> (y + 1 +4x + 3y + 3)(y + 1 - 4x - 3y - 3) = 8 

<=> 4(x + y + 4)( - 4x - 2y - 2) = 8 

<=> (x + y + 4)( 2x + y + 1) = -1 

=> 

{x + y + 4 = -1 

{2x + y + 1 = 1 

=> x = 2 và y = - 4 

{x + y + 4 = 1 

{2x + y + 1 = - 1 

=> x = - 2 và y = 2 

vậy nghiệm (x;y) = (2 ; - 4) (-2; 2)

^^ ko hiểu thì bình luận

30 tháng 7 2017

cái dòng đầu là sao z bn 

10 tháng 3 2015

vì y2 luôn lớn hơn hoặc bằng 0 nên 5.y2 cũng luôn lớn hơn hoặc bằng 0 

=> 6x2 < 74 => x2 < 74/6 <13

vì x nguyên nên x2 có thể nhận các giá trị 0; 1; 4; 9

x2 = 0 => 5y2 = 74 => y2 = 74/5 loại vì y nguyên

x2 = 1 => 5y2 = 68 => y2 = 68/5 loại vì y nguyên

x2 = 4 => 5y2 = 50 => y2 = 10 => loại

x2 = 9 => 5y2 = 20 => y2 = 4 => y = 2 hoặc -2 khi đps x = 3 hoặc -3

vậy có tất cả các cặp (x;y) là (3;2); (-3;2); (3;-2); (-3;-2);

12 tháng 3 2018

vì y2
 luôn lớn hơn hoặc bằng 0 nên 5.y
2
 cũng luôn lớn hơn hoặc bằng 0 
=> 6x2
 < 74 => x2
 < 74/6 <13
vì x nguyên nên x2
 có thể nhận các giá trị 0; 1; 4; 9
x
2
 = 0 => 5y2
 = 74 => y2
 = 74/5 loại vì y nguyên
x
2
 = 1 => 5y2
 = 68 => y2
 = 68/5 loại vì y nguyên
x
2
 = 4 => 5y2
 = 50 => y2
 = 10 => loại
x
2
 = 9 => 5y2
 = 20 => y2
 = 4 => y = 2 hoặc -2 khi đps x = 3 hoặc -3
vậy có tất cả các cặp (x;y) là (3;2); (-3;2); (3;-2); (-3;-2)

:3

25 tháng 2 2018

Xét \(2x^2+3x+2=2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{16}>0\forall x\in R\)

=> \(x^3< y^3\left(1\right)\) (1)

Giả sử : \(y^3< \left(x+2\right)^3\)

\(\Leftrightarrow x^3+2x^2+3x+2< x^3+6x^2+12x+8\)

\(\Leftrightarrow-4x^2-9x-6< 0\)

\(\Leftrightarrow4x^2+9x+6>0\)

\(\Leftrightarrow4\left(x+\dfrac{9}{8}\right)^2+\dfrac{15}{64}>0\)

=> Giả sử đúng .

=> \(y^3< \left(x+2\right)^3\left(2\right)\)

Từ (1)(2) => \(y^3=\left(x+1\right)^3\)

\(\Leftrightarrow x^3+2x^2+3x+2=x^3+3x^2+3x+1\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

.) Khi \(x=1\Rightarrow y=2\).

.) Khi \(x=-1\Rightarrow y=0\)

Vậy nghiệm của pt ( x;y ) = {( 1;2 ) ; ( -1;0 )}

29 tháng 3 2016

Với \(\begin{bmatrix} x> 1 & \\ x< -1& \end{bmatrix}\) ta có: \(x^{3}< x^{3}+2x^{2}+3x+2< (x+1)^{3}\Rightarrow x^{3}< y^{3}< (x+1)^{3}\) (không xảy ra)

Từ đây suy ra: \(-1\leq x\leq 1\)

mà \(x\in \mathbb{Z}\Rightarrow x\in \left \{ -1;0;1 \right \}\)

\(\bullet\)Với  \(x=-1\Rightarrow y=0\)

\(\bullet\)Với \(x=0\Rightarrow y=\sqrt[3]{2}\) (không thỏa mãn)

\(\bullet\)Với \(x=1\Rightarrow y=2\)

Vậy phương trình có 2 nghiệm nguyên \((x;y)\) là \((-1;0)\) và \((1;2)\)

  \( nha\)

bạn trả lời mà

 ghi kiểu gì đây