Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vai trò của p,q,r là như nhau nên giả sử như sau:p<q<r
Xét p=2, ta tìm được 3 số là:2;3;5(ko thỏa mãn)
Xét p=3,ta tìm được 3 số là:3;5;7(thỏa mãn)
Xét p>3
Bổ đề:Mọi số nguyên tố>3nên xem bình phương lên thì luôn chia 3 dư 1 thật vậy các số nguyên tố lớn hơn 3 nên có dạng:3k+1hoặc 3k+2
Nếu có dạng 3k+1,ta có: (3k+1)2=9k2+6k+1_1(mod3)
Nếu có dạng 3k+2 ,ta có:(3k+2)2=9k2+12k+4_1 (mod3)
Vậy nếu p>3 thì các số q,r>3 nên khi bình phương lên thì đều dư 1
==>p2+q2+r2=0(mod3)
Vậy ta có:(3,5,7)và các hoán vị
p^q+q^p=r
Ta có:p^q+q^p=r suy ra r>p^q và r>q^p
Cho p^q là số chẵn suy ra p là số chẵn mà p nguyên tố suy ra p=2
Ta có: 2^q+q^2=r
p chẵn suy ra y lẻ ma y nguyên tố suy ra y là số nguyên tố lớn hơn hoặc bằng 3
Ta cho: p=2; q=3; r=17
q=3 suy ra r= 2^3+3^2=17(thỏa)
q>3 suy ra 2^q chia 3 dư 2 va q^2 chia 3 dư 1
Suy ra r chia hết cho 3(vô lí) vì r là số nguyên tố
Vậy(p;q;r)=(2;3;17);(3;2;17)
p^q+q^p=r
Ta có:p^q+q^p=r suy ra r>p^q và r>q^p
Cho p^q là số chẵn suy ra p là số chẵn mà p nguyên tố suy ra p=2
Ta có: 2^q+q^2=r
p chẵn suy ra y lẻ ma y nguyên tố suy ra y là số nguyên tố lớn hơn hoặc bằng 3
Ta cho: p=2; q=3; r=17
q=3 suy ra r= 2^3+3^2=17(thỏa)
q>3 suy ra 2^q chia 3 dư 2 va q^2 chia 3 dư 1
Suy ra r chia hết cho 3(vô lí) vì r là số nguyên tố
Vậy(p;q;r)=(2;3;17);(3;2;17)
p^q+q^p=r
Ta thấy r chỉ có thể là 1 số lẻ.
Mà một số lẻ = số lẻ + số chẵn.
Vậy p^q hoặc q^p là số chẵn.
Mà số lẻ mũ bao nhiêu thì cũng là số lẻ.
Vậy p hoặc q sẽ là một số chẵn.
Mà p,q,r là số nguyên tố nên p hoặc q sẽ = 2
Nếu p = 2 thì ta có 2^q + q^2 =r
Tớ chỉ giải được đến đây thôi nhé .
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America