Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{23.27}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}=\frac{1}{3}-\frac{1}{27}=\frac{8}{27}\)
b)\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
c)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}=\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{13}+2\left(1-\frac{1}{10}\right)=\frac{10}{39}+\frac{9}{5}=\frac{401}{195}\)
A=4/3+7/6+11/10+16/15+22/21+29/28+37/36+46/45
A = ( 1 + 1/3 ) + ( 1 + 1/6 ) + ( 1 + 1/10 ) + ( 1 + 1/15 ) + ( 1 + 1/21 ) + ( 1 + 1/28 ) + ( 1 + 1/36 ) + ( 1 + 1/45 )
A = ( 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 ) + - ( 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28 + 1/36 + 1/45 )
A = 8 + 4/5
A = 44/5
A = 4/3 + 7/6 + 11/10 + 16/15 + 22/21 + 29/28 + 37/36 + 46/45
A = ( 1 + 1/3 ) + ( 1 + 1/6 ) + ( 1 + 1/10 ) + ( 1 + 1/15 ) + ( 1 + 1/21 ) + ( 1 + 1/28 ) + ( 1 + 1/36 ) + ( 1 + 1/45 )
A = ( 1 + 1 + 1 + ... + 1 ) - ( 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28 + 1/36 + 1/45 )
a) \(\frac{1.3+3.5+5.7+7.9}{3.6+9.10+15.14+21.18}\)
= \(\frac{1.3+3.5+5.7+7.9}{1.3.2.3+3.5.2.3+5.7.2.3+7.9.2.3}\)
= \(\frac{1.3+3.5+5.7+7.9}{1.3.6+3.5.6+5.7.6+7.9.6}\)
= \(\frac{1.3+3.5+5.7+7.9}{6.\left(1.3+3.5+5.7+7.9\right)}=\frac{1}{6}\)
Dấu "." là dấu nhân cấp 2
b) \(\frac{1.2+2.3+3.4+4.5}{3.6+6.9+9.12+12.15}\)
= \(\frac{1.2+2.3+3.4+4.5}{1.2.3.3+2.3.3.3+3.4.3.3+4.5.3.3}\)
= \(\frac{1.2+2.3+3.4+4.5}{1.2.9+2.3.9+3.4.9+4.5.9}\)
= \(\frac{1.2+2.3+3.4+4.5}{9.\left(1.2+2.3+3.4+4.5\right)}=\frac{1}{9}\)
Dấu "." là dấu nhân cấp 2
c) \(\frac{0,3+\frac{3}{7}+\frac{3}{11}}{0,4+\frac{4}{7}+\frac{4}{11}}\)= \(\frac{\frac{3}{10}+\frac{3}{7}+\frac{3}{11}}{\frac{4}{10}+\frac{4}{7}+\frac{4}{11}}\)= \(\frac{3.\left(\frac{1}{10}+\frac{1}{7}+\frac{1}{11}\right)}{4.\left(\frac{1}{10}+\frac{1}{7}+\frac{1}{11}\right)}=\frac{3}{4}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{a\left(a+4\right)}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{a}-\frac{1}{a+4}\)
\(=\frac{1}{3}-\frac{1}{a+4}\)