Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính tổng các dãy sau :
A = 1 + 2 + 22+…+ 2100
B = 3 – 32 + 33 – … – 3100
Bài giải:
A = 1 + 2 + 22 + …+ 2 100
Nhân a = 2 cho hai vế :
2A = 2 + 22 + 23 + …+ 2101
tính : 2A – A = (2 + 22 + 23 + …+ 2101 ) – (1 +2 + 22+ …+2100)
Vậy A = 2101 – 1
B = 3 – 32 + 33 – … – 3100
Nhân a = 3 cho hai vế : 3B = 32 – 33 + 34 – … – 3101
Tín : B + 3B = (3 – 33 + 33) – …- 3100) + ( 32 – 23 +34 – … – 3101)
4B = 3 – 3101
Vậy B = ( 3- 3101) : 4
1) Tìm 2 chữ số tận cùng của \(A=2^{2015}+2^{2016}+2^{2017}\)
Ta sẽ tìm 2 chữ số của từng số hạng, rồi cộng các tổng
*) 2 chữ số tận cùng của \(2^{2015}\) có nghĩa là \(2^{2015}:100\)
Ta có: \(2^{10}\equiv24\left(mod100\right)\)
\(\left(2^{10}\right)^5\equiv24^5\equiv24\left(mod100\right)\)
\(\left(2^{50}\right)^4\equiv24^4\equiv76\left(mod100\right)\)
\(\left(2^{200}\right)^5\equiv76^5\equiv76\left(mod100\right)\)
\(\left(2^{1000}\right)^2\equiv76^2\equiv76\left(mod100\right)\)
=> \(2^{2000}\cdot2^{15}\equiv76\cdot68\equiv5168\left(mod100\right)\)
=> 2 chữ số tận cùng của 22015 là 68 (1)
Tương tự với 22016 và 22017
*) => \(2^{2000}\cdot2^{16}\equiv76\cdot36\equiv2736\left(mod100\right)\)
=> 2 chữ số tận cùng của 22016 là 36 (2)
*) \(2^{2000}\cdot2^{17}\equiv76\cdot72\equiv5472\left(mod100\right)\)
=> 2 chữ số tận cùng của \(2^{2017}\) là 72 (3)
Từ (1), (2) , (3) ta có:
\(A=2^{2015}+2^{2016}+2^{2017}\equiv68+36+72\equiv176\left(mod100\right)\)
Vậy 2 chữ số tận cùng của A là 76
Bài 2: Bài này thì dễ hơn, bn cx tìm đồng dư của số đó với 100 là ra! Nếu cần lời giải chi tiết thì nói vs mk
bạn ghi đáp án sau mình trả lời ok ko ?
5 chữ số tận cùng băng 6158