K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

x , y TLT với 4 , 7

=> x/4 = y/7 =>x/12 = y/21 (1)

y , z TLN với 5 , 3

=> y.5=z.3

=> y/3=z/5 =>y/21 = z/35 (2)

Từ 1 và 2 => x/12 =y/21 =z/35 = 2x/24

Áp dụng tính chất …

x/12 =y/21 =z/35 = 2x/24 = 2z-y+z/24-21+35 = 114/38=3

=> x=36 ; y=63 ; z=105

18 tháng 2 2023

a) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên \(y=a.x\) nên \(x=\dfrac{y}{a}\)

                y tỉ lệ thuận với z theo hệ số tỉ lệ b nên \(y=b.z\)

Do đó, \(x=\dfrac{y}{a}=\dfrac{b.z}{a}=\dfrac{b}{a}.z\left(\dfrac{b}{a}\text{là hằng số vì a,b là các hằng số}\right)\)

Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)

b) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên y = a.x nên \(x=\dfrac{y}{a}\)

y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên \(y=\dfrac{b}{z}\)

Do đó: \(x=\dfrac{y}{a}=\dfrac{\dfrac{b}{z}}{a}=\dfrac{b}{z}:a=\dfrac{b}{z}.\dfrac{1}{a}=\dfrac{\dfrac{b}{a}}{z}\left(\dfrac{b}{a}\text{là hằng số vì a,b là các hằng số}\right)\)

Vậy x tỉ lệ nghịch với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)

c) Giả sử y tỉ lệ nghịch với x theo hệ số tỉ lệ a nên \(y=\dfrac{a}{x}\)  nên \(x=\dfrac{a}{y}\)

y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên \(y=\dfrac{b}{z}\)

Do đó: \(x=\dfrac{a}{y}=\dfrac{a}{\dfrac{b}{z}}=a:\dfrac{b}{z}=a.\dfrac{z}{b}=\dfrac{a}{b}.z\left(\dfrac{a}{b}\text{ là hằng số vì a,b là các hằng số}\right)\)

Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{a}{b}\)

 
8 tháng 3 2023

thank bn

7 tháng 12 2016

két bạn với mk nhé hoàng nguyên minh thư

16 tháng 7 2017

588997543679964jsjjdhdhdfhhdkeoj

15 tháng 12 2020

3)

Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ 0,8 nên xy=0,8 (1)

 x tỉ lệ nghịch với z theo hệ số tỉ lệ 0,5 nên xz=0,5 (2)

Từ (1) và (2) suy ra xy/xz=0,8*0,5 hay y/z=0,4 suy ra y=0,4*z

Vậy y tỉ lệ thuận với z theo hệ số tỉ lệ là 0,4

15 tháng 12 2020

\(\sqrt{ }\)

DD
25 tháng 10 2021

\(x\)và \(y\)tỉ lệ thuận với \(2\)và \(5\)nên \(\frac{x}{2}=\frac{y}{5}\).

\(y\)và \(z\)tỉ lệ nghịch với \(3\)và \(4\)nên \(\frac{y}{4}=\frac{z}{3}\).

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{y}{4}=\frac{z}{3}\end{cases}}\Leftrightarrow\frac{x}{8}=\frac{y}{20}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{8}=\frac{y}{20}=\frac{z}{15}=\frac{x-y+z}{8-20+15}=\frac{36}{3}=12\)

\(\Leftrightarrow\hept{\begin{cases}x=12.8=96\\y=12.20=240\\z=12.15=180\end{cases}}\)

`@` `\text {dnammv}`

Ta có:

`x` và `y` tỉ lệ nghịch với nhau theo hệ số tỉ lệ `5`

`-> x=5/y` `(1)`

`y` và `z` tỉ lệ nghịch với nhau theo hệ số tỉ lệ `3`

`-> y=3/z` `(2)`

Từ `(1)` và `(2)`

`-> x=5/(3/z)`

`x=5*z/3 = 5/3*z`

Vậy, `x` tỉ lệ thuận với `z` theo hệ số tỉ lệ `5/3.`

x và y tỉ lệ nghịch theo hệ số tỉ lệ 5 nên y=5/x

y và z tỉ lệ nghịch theo hệ số tỉ lệ 3 nên y=3/z

=>5/x=3/z

=>3x=5z

=>x=5/3z

=>x và z tỉ lệ thuận theo hệ số tỉ lệ 5/3