Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì số chính phương hay còn gọi là số hình vuông là số tự nhiên có căn bậc 2 là một số tự nhiên, hay nói cách khác, số chính phương là bìnhphương (lũy thừa bậc 2) của một số tự nhiên khác. Số chính phươnghiển thị diện tích của một hình vuông có chiều dài cạnh bằng số nguyên kia.
Từ đó ta => Số tự nhiên cần tìm là 75 Thử lại 752 ( Đúng )
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
vì số chính phương = bình phương 1 số tự nhiên.
mà bình phương các số tự nhiên như ( 0 , 1 , 2 , .... , 9) ta lại được các số chính phương : 0 , 1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 và các số trên ko có tận cùng 2 , 3 , 7 , 8
từ đề bài suy ra 10<=n<=99,suy ra 21<=2n+1<=199
. vì 2n+1 là số lẻ nên có các giá trị là 25,49,81,121,169 tương ứng n có các giá trị 12,24,40,60,80
mà 3n+1 có các giá trị 37,73,121,181,253,nên chỉ có 121 là chung
suy ra:n=40
Ta có 10 <= n <= 99 nên 21 <= 2n + 1 <= 199
Tìm số chính phương lẻ trong khoảng trên ta được 2n + 1 bằng 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84
Số 3n + 1 bằng 37; 73; 121; 181; 253. Chỉ có 121 là số chính phương. Vậy n = 40
gọi 2n + 1 = a2 , 3n + 1= b2 ( a,b thuộc N, 10 ≤ n ≤ 99)
10 ≤ n ≤ 99 => 21 ≤ 2n + 1 ≤ 199
=> 21 ≤ a2 ≤ 199
mà 2n là số lẻ
=> 2n + 1 = a2 thuộc { 25;49;81;121;169}
=> n thuộc { 12;24;40;60;84}
=> 3n + 1 thuộc {37;73;121;181;253}
mà 3n + 1 là số chín phương
=> 3n + 1 = 121 => n = 40
vậy n=40
Ta có các SCP có 1 chữ số là 0; 1; 4; 9
=> Các số cần tìm là 00; 11; 44; 99.
Mà 00 không phải số có 2 chữ số.
Vậy số cần tìm là 11; 44 hoặc 99.