Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}\right)+\frac{5}{9}:\left(\frac{1}{15}-\frac{2}{3}\right)\)
\(=\frac{5}{9}:\left[\left(\frac{1}{11}-\frac{5}{22}\right)+\left(\frac{1}{15}-\frac{2}{3}\right)\right]\)
\(=\frac{5}{9}:\left[-\frac{3}{22}+-\frac{3}{5}\right]\)
\(=\frac{5}{9}:\frac{-81}{110}\)
\(=\frac{-550}{729}\)
`(2 1/3 + 3 1/2): (-4 1/6 + 3 1/7) +7,5`
`=(7/3 +7/2) : (-25/6 + 22/7) + 15/2`
`=35/6 : (-43/42) + 15/2`
`=-245/43+15/2`
`=155/86`
\(\frac{\left(-4\right)^6.9^5-\left(-6\right)^9.120.1^{2015}}{8^4.3^{12}-6^{11}.2016^0}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5.1}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}.1}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}=\frac{2.6}{3.5}=\frac{4}{5}\)
\(\frac{\left(-4\right)^6.9^5-\left(-6\right)^9.120.1^{2015}}{8^4.3^{12}-6^{11}.2016^0}=\frac{\left(-2\right)^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}=\frac{2.6}{3.5}=\frac{4}{5}\)
Ta có:
\(\left(x-1\right).\left(x+1\right).\left(x+2\right)\)
\(=\left(x^2+x-x-1\right).\left(x+2\right)\)
\(=\left(x^2-1\right).\left(x+2\right)\)
\(=x^3+2x^2-x-2\)
\(\frac{2.2^{12}.3^6+2^2.2^9.3^9}{2^7.2^7.3^7.2^4.5.3^8}\)
\(=\frac{2^{13}.3^6+2^{11}.3^{^9}}{2^{18}.3^{15}.5}\)
\(=\frac{2^{11}.3^6\left(2^2+3^3\right)}{2^{11}.3^6.2^6.3^4.5}\)
\(=\frac{35}{2^6.3^4.5}\)
Ta có : $1-3-5-7-9-...-49$
$=1-(3+5+7+9+...+49)$
$=1-\dfrac{(3+49).24}{2}$
$=1-624=-623$
\(1-3-5-7-...-49\)
\(=1+\left(-3\right)+\left(-5\right)+\left(-7\right)+...+\left(-49\right)\)
Đặt:
\(A=\left(-3\right)+\left(-5\right)+\left(-7\right)+...+\left(-49\right)\)
\(A=\left[\left(\dfrac{49-3}{2}+1\right)\right]:2\left[\left(-3\right)+\left(-49\right)\right]\)
\(A=-624\)
Thay vào ta có giá trị biểu thức ban đầu là:
\(1+\left(-624\right)=-623\)