K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2016

A= 12x^2-9x-x^3-x^2-11x^2+12

A=-x^3-9x+12

5 tháng 12 2015

\(y=\frac{\frac{^x}{x^2}-x-6-x-\frac{1}{3}x^2-4x-15}{x^4}-2x^2+\frac{1}{3}x^2+11x+10b\)

\(y=\frac{-\left(5x^7-33x^6-30bx^5+x^3+18x^2+63x-3\right)}{3x^5}\)

TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)

 

27 tháng 6 2016

a) \(\left(2x-1\right)^2-\left(x+2\right)^2-3x^2+5x\)

\(=4x^2-4x+1-\left(x^2+4x+4\right)-3x^2+5x\)

\(=x^2-3x-3\)

b) \(\left(x+2\right)\left(x-1\right)+2\left(3x-2\right)^2+4x-19x^2\)

\(=x^2+2x-x-2+2\left(9x^2-12x+4\right)+4x-19x^2\)

\(=x^2+2x-x-2+18x^2-24x+8+4x-19x^2\)

\(=-19x+6\)

c) \(2\left(3-x\right)\left(x-2\right)-\left(3x+1\right)^2+5x-11x^2\)

\(=6-2x\left(x-2\right)-\left(9x^2+6x+1\right)+5x-11x^2\)

\(=6-2x^3+4x-9x^2-6x-1+5x-11x^2\)

\(=-2x^3-20x^2+3x+5\)

Ta có: \(A=\left(4x-2\right)^2+\left(-3x+1\right)^2-\left(4x-1\right)\left(3-3x\right)\)

\(=16x^2-16x+4+9x^2-6x+1-\left(12x-12x^2-3+3x\right)\)

\(=25x^2-22x+5-15x+12x^2+3\)

\(=37x^2-37x+8\)

Thay x=-3 vào biểu thức \(A=37x^2-37x+8\), ta được:

\(A=37\cdot\left(-3\right)^2-37\cdot\left(-3\right)+8\)

\(=37\cdot9+111+8\)

\(=333+111+8\)

\(=452\)

Vậy: 452 là giá trị của biểu thức \(A=\left(4x-2\right)^2+\left(-3x+1\right)^2-\left(4x-1\right)\left(3-3x\right)\) tại x=-3

18 tháng 12 2022

a: =18x^3y^2-12x^3y^3+6x^2y^2

b: (-3x+2)(5x^2-1/3x+4)

=-12x^3+x^2-12x+10x^2-2/3x+8

=-12x^3+11x^2-38/3x+8

c: =x^2-x-2+3x-x^2

=2x-2

d: =4x^2+12x+9-4x^2+25-(x-1)(x^2+12)

=12x+34-x^3-12x+x^2+12

=-x^3+x^2+46

30 tháng 9 2020

Bài 1.

1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15

<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15

<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15

<=> 12x2 + 15 = 15

<=> 12x2 = 0

<=> x = 0

2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13

<=> x( x2 - 16 ) - ( x3 - 53 ) = 13

<=> x3 - 16x - x3 + 125 = 13

<=> 125 - 16x = 13

<=> 16x = 112

<=> x = 7

Bài 2.

A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )

= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x

= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x

= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )

B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x+ 3x( x - 1 )

= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x

= 7 ( đpcm )

C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15

= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15

= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15

= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]

= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )

= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )

= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )

= 64x3 - 16 + 704x3 + 528x2 + 180x + 23 

= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )

a: Ta có: \(x^2-4x\left(3x-4\right)+7x-5\)

\(=x^2-12x^2+16x+7x-5\)

\(=-11x^2+23x-5\)

b: Ta có: \(7x\left(x^2-5\right)-3x^2y\left(xy-6y^2\right)\)

\(=7x^3-35x-3x^3y^2+18x^2y^3\)

c: Ta có: \(\left(5x+4\right)\left(2x-7\right)\)

\(=10x^2-35x+8x-28\)

\(=10x^2-27x-28\)

25 tháng 8 2021

undefined