K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

a) Xét Tam giác ABM có hai đường cao AH, BE giao nhau tại D nên D là trực tâm

=> MD cũng là đường cao => MD vuông góc với AB.

b) Tam giác ABF vuông tại A đường cao AE, theo hệ thức lượng trong tam giác vuông:

\(AB^2=BE.BF\)(1)

Tam giác ABC vuông tại A đường cao AH, theo hệ thức lượng trong tam giác vuông:

\(AB^2=BH.BC\)(2)

Từ (1) và (2) suy ra BE.BE=BH.BC(đpcm)

a: Ta có: ΔABC vuông tại A 

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên BC=2AM

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AB^2=BH\cdot BC\)

hay \(AB^2=2\cdot BH\cdot AM\)

27 tháng 7 2017

2/ \(\frac{sin^3a-cos^3a}{sin^3a+cos^3a}=\frac{tan^3a-1}{tan^3a+1}=\frac{3^3-1}{3^3+1}=\frac{13}{14}\) (chia tử mẫu cho cos3a)

13 tháng 7 2021

a) tam giác ABC vuông tại A có AM là trung tuyến \(\Rightarrow AM=\dfrac{BC}{2}\)

Ta có: \(2BH.AM=BH.2AM=BH.BC=AB^2\)

b) tam giác BAF vuông tại A có đường cao AE 

\(\Rightarrow BE.BF=BA^2=BH.BC\)

Ta có: \(AM=\dfrac{BC}{2}=BM\Rightarrow\Delta ABM\) cân tại M

\(\Rightarrow\angle MAB=\angle MBA\) mà \(\angle MAB=\angle BFA\Rightarrow\angle ABC=\angle BFA\) 

Xét \(\Delta ABF\) và \(\Delta ACB:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle ABC=\angle BFA\end{matrix}\right.\)

\(\Rightarrow\Delta ABF\sim\Delta ACB\left(g-g\right)\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AB}\Rightarrow AB^2=AF.AC\)

\(\Rightarrow BE.BF=BH.BC=AF.AC\)

undefined