Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMB vuông tại M và ΔANC vuông tại N có
\(\widehat{BAM}\) chung
Do đó: ΔAMB\(\sim\)ΔANC(g-g)
Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Xét ΔAMN và ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)
\(\widehat{NAM}\) chung
Do đó: ΔAMN\(\sim\)ΔABC(c-g-c)
a: XétΔAMB vuông tại M và ΔANC vuông tại N có
góc A chung
Do đó: ΔAMB\(\sim\)ΔANC
b: Ta có: ΔANH vuông tại N
mà NI là đường trung tuyến
nên NI=AH/2(1)
Ta có: ΔAMH vuông tại M
mà MI là đường trung tuyến
nên MI=AH/2(2)
Từ (1) và (2) suy ra NI=MI(3)
Ta có: ΔNBC vuông tại N
mà NK là đường trung tuyến
nên NK=BC/2(4)
Ta có: ΔMBC vuông tại M
mà MK là đường trung tuyến
nên MK=BC/2(5)
Từ (4), (5) suy ra NK=MK(6)
Từ (3) và (6) suy ra IK là đường trung trực của MN
AH cắt BC tại P.
-Xét △ABC có:
BM, CN lần lượt là các đường cao (gt).
BM và CN cắt nhau tại H.
\(\Rightarrow\) H là trực tâm của △ABC.
\(\Rightarrow\) AH là đường cao của △ABC.
Mà AH cắt BC tại P (gt).
\(\Rightarrow\) AH⊥BC tại P.
-Xét △BHP và △BCM có:
\(\widehat{CBM}\) là góc chung.
\(\widehat{BPH}=\widehat{BMC}=90^0\)
\(\Rightarrow\)△BHP ∼ △BCM (g-g).
\(\Rightarrow\)\(\dfrac{BH}{BC}=\dfrac{BP}{BM}\) (2 tỉ lệ tương ứng).
\(\Rightarrow BH.BM=BP.BC\) (1)
-Xét △CHP và △CBN có:
\(\widehat{BCN}\) là góc chung.
\(\widehat{CPH}=\widehat{CNB}=90^0\)
\(\Rightarrow\)△CHP ∼ △CBN (g-g).
\(\Rightarrow\)\(\dfrac{CH}{CB}=\dfrac{CP}{CN}\) (2 tỉ lệ tương ứng).
\(\Rightarrow CH.CN=CP.CB\) (2)
-Từ (1), (2) suy ra:
\(BH.BM+CH.CN=BP.BC+CP.BC=BC\left(BP+CP\right)=BC.BC=BC^2\)