K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

oe

AH
Akai Haruma
Giáo viên
27 tháng 11 2017

Lời giải:

Từ giả thiết đề bài suy ra $M$ là trung điểm của $BD$ và $N$ là trung điểm của $EC$

Xét tứ giác $ADCB$ có hai đường chéo $AC$ và $BD$ cắt nhau tại trung điểm $M$ nên $ADCB$ là hình bình hành:

\(\Rightarrow AD=BC(1)\)

Xét tứ giác $AEBC$ có hai đường chéo $AB$ và $CE$ cắt nhau tại trung điểm $N$ của mỗi đường nên $AEBC$ là hình bình hành

\(\Rightarrow AE=BC(2)\)

a) Từ (1),(2) suy ra \(AD=AE\)

b) Vì \(ADCB,AEBC\) là hình bình hành nên \(AE\parallel BC, AD\parallel BC\Rightarrow A,E,D\) thẳng hàng

Mà \(AE=AD\) (theo phần a) nên $A$ là trung điểm của $ED$

Do đó ta có đpcm.

27 tháng 11 2017

thua co em chua hoc hinh binh hanh cô có thể giải theo Trường hợp bằng nhau thứ hai của tam giác cạnh - góc dc ko ak

11 tháng 3 2019

B C A D M E F

                                                  CM

a) Xét \(\Delta MBD\)và \(\Delta MEA\)có:

             \(\hept{\begin{cases}MD=MA\left(gt\right)\\\widehat{BMD}=\widehat{EMA}\left(2gocdoidinh\right)\\MB=ME\left(gt\right)\end{cases}}\)\(\Rightarrow\Delta MBD=\Delta MEA\left(c.g.c\right)\)

\(\Rightarrow AE=BD\)( 2 cạnh tương ứng )

b) Xét\(\Delta MAF\) và \(\Delta MDC\)có:

          \(\hept{\begin{cases}MA=MD\left(gt\right)\\\widehat{AMF}=\widehat{DMC}\left(2gocdoidinh\right)\\MF=MC\left(gt\right)\end{cases}}\)\(\Rightarrow\Delta MAF=\Delta MDC\left(c.g.c\right)\)

\(\Rightarrow\widehat{MFA}=\widehat{MCD}\)( 2 góc tương ứng ) mà 2 góc này ở vị trí SLT

\(\Rightarrow AF//BC\)              (1)

c) Vì \(\Delta MBD=\Delta MEA\)( cmt )

\(\Rightarrow\widehat{MEA}=\widehat{MBD}\) ( 2 góc tương ứng ) mà 2 góc này ở vị trí SLT

\(\Rightarrow AE//BC\)               ( 2)

Từ (1) và (2) \(\Rightarrow F,A,E\) thẳng hàng ( định lý Py - Ta - go ) 

11 tháng 2 2020

  Xét ΔABM và  ΔCDM có:
AM = MC ( vì M là trung điểm của AC)
BM = MD ( theo giả thiết -cách vẽ)
góc AMB = góc CMD ( đối đỉnh)
suy ra ΔABM = ΔCDM ( c-g-c)

=> IA = IB ( dpcm )

#B

d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)

\(\widehat{KCB}=\widehat{NCE}\)

mà \(\widehat{MBD}=\widehat{NCE}\)

nên \(\widehat{KBC}=\widehat{KCB}\)

hay ΔKBC cân tại K

=>KB=KC

Ta có: KB+BM=KM

KC+CN=KN

mà KB=KC

và BM=CN

nên KM=KN

=>ΔKNM cân tại K