K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2017

 

Áp dụng hệ thức đường trung tuyến m a 2 = b 2 + c 2 2 − a 2 4  ta được:

m a 2 = A C 2 + A B 2 2 − B C 2 4 = 12 2 + 9 2 2 − 15 2 4 = 225 4 .

⇒ m a = 15 2 .

Chọn A.

23 tháng 5 2018

Chọn A.

Áp dụng hệ thức đường trung tuyến  ta được:

Suy ra : ma= 7,5.

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

24 tháng 1 2022

Xét tam giác ABC có đường cao BH:

cos ABC = \(\dfrac{7^2+15^2-13^2}{2\cdot7\cdot15}\) = \(\dfrac{1}{2}\) \(\Rightarrow\) \(\widehat{ABC}=60^o\)

\(p=\dfrac{13+7+15}{2}=17,5\) (cm)

Hê-rông: \(S=\sqrt{17,5\cdot\left(17,5-13\right)\cdot\left(17,5-7\right)\cdot\left(17,5-15\right)}\approx45,5\) (cm2)

\(S=\dfrac{abc}{4R}\) \(\Rightarrow\) \(R=\dfrac{abc}{4S}\approx\dfrac{13\cdot7\cdot15}{4\cdot45,5}=7,5\) (cm)

\(S=\dfrac{1}{2}BH\cdot AC\) \(\Rightarrow\) \(BH=\dfrac{2S}{AC}\approx\dfrac{2\cdot45,5}{13}=7\) (cm)

Chúc bn học tốt!

c: \(AM^2=\dfrac{2\cdot\left(AB^2+AC^2\right)-BC^2}{4}=\dfrac{2\cdot\left(48^2+14^2\right)-50^2}{4}=625\)

nên AM=25(cm)

a: Xét ΔAHB vuông tại H có 

\(AB^2=AH^2+HB^2\)

nên AH=16(cm)

Xét ΔAHC vuông tại H và ΔBKC vuông tại K có 

\(\widehat{C}\) chung

Do đó: ΔAHC\(\sim\)ΔBKC

Suy ra: \(\dfrac{AH}{BK}=\dfrac{HC}{KC}=\dfrac{AC}{BC}\)

=>16/BK=20/24=5/6

=>BK=19,2(cm)

28 tháng 2 2018

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

a) Do tam giác ABC là tam giác đều nên Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10 .

Theo định lý côsin trong tam giác ABM ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

b) Theo định lý sin trong tam giác ABM ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

c) Ta có: BM + MC = BC nên MC = BC – BM = 6 - 2 = 4 cm.

Gọi D là trung điểm AM.

Áp dụng công thức độ dài đường trung tuyến trong tam giác ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

16 tháng 6 2018

Chọn A.

+ Vì M là trung điểm của BC nên 

Suy ra 

Theo câu trên ta có  nên