Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
B C 2 = A B 2 + A C 2 = 21 2 + 28 2 = 1225
Suy ra: BC = 35 (cm)
Vì AD là đường phân giác của ∠ (BAC) nên:
(t/chất đường phân giác)
Suy ra:
Hay
Suy ra:
Vậy DC = BC – BD = 35 – 15 = 20cm
Trong ΔABC ta có: DE // AB
Suy ra: (Hệ quả định lí Ta-lét)
Suy ra:
Vì △ ABD và △ ABC có chung đường cao kẻ từ đỉnh A nên:
Vậy: S A B D = 3/8.S
S A D C = S A B C - S A B D = S - 3/8.S = 8/8.S - 3/8.S = 5/8.S
Vì DE // AB và AD là đường phân giác góc A nên AE = DE
Ta có:
Vậy:
Ta có:
Xét ΔBAC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{12}=\dfrac{CD}{20}\)
mà BD+CD=28cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{12}=\dfrac{CD}{20}=\dfrac{BD+CD}{12+20}=\dfrac{28}{32}=\dfrac{7}{8}\)
Do đó: BD=10,5cm; CD=17,5cm
Xét ΔBAC có
DE//AB
nên \(\dfrac{DE}{AB}=\dfrac{CD}{BC}\)
\(\Leftrightarrow DE=\dfrac{17.5}{28}\cdot12=7.5\left(cm\right)\)
* Trong △ ABC, ta có:
AD là đường phân giác của ∠ (BAC)
Suy ra: (tính chất tia phân giác)
Suy ra:
Suy ra:
Suy ra:
Vậy DC = BC - DB = 28 - 10,5 = 17,5 (cm)
* Trong △ ABC, ta có: DE // AB
Suy ra: (Hệ quả định lí Ta-lét)
Vậy: