K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

Lời giải:

\(A=(x+2y+3z)(x-2y+3z)\)

\(=[(x+3z)+2y][(x+3z)-2y]\)

\(=(x+3z)^2-(2y)^2\)

\(=x^2+9z^2+6xz-4y^2\)

19 tháng 11 2021

\(a,VT=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\\ =a-2\sqrt{ab}+b=\left(\sqrt{a}-\sqrt{b}\right)^2=VP\\ b,VP=\dfrac{3\left(x+z\right)}{xy\left(x+z\right)}=\dfrac{3}{xy}=VP\)

3 tháng 8 2018

\(A^2=\left(x+2y+3z\right)^2\le\left(1+4+9\right)\left(x^2+y^2+z^2\right)=14.126=1764\)

\(\Leftrightarrow-42\le A\le42\)

3 tháng 8 2018

Áp dụng BĐT Bunhiacopski, ta có:

\(F^2=\)\(\left(x+2y+3z\right)^2\le\left(1^2+2^2+3^2\right)\left(x^2+y^2+z^2\right)\)

\(\Rightarrow F^2=\left(x+2y+3z\right)^2\le1764\)

\(\Rightarrow-42\le F\le42\)

3 tháng 1 2021

thanks ;))

Mai mk thi hk hihi

NV
5 tháng 8 2021

Đặt \(\left(x;2y;3z\right)=\left(a;b;c\right)\Rightarrow a+b+c=2\)

\(S=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

\(S=\sqrt{\dfrac{ab}{ab+c\left(a+b+c\right)}}+\sqrt{\dfrac{bc}{bc+a\left(a+b+c\right)}}+\sqrt{\dfrac{ca}{ca+b\left(a+b+c\right)}}\)

\(S=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)

\(S\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\Rightarrow x;y;z\)

27 tháng 2 2020

\(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)

\(=\left(\frac{3}{x}+\frac{3x}{4}\right)+\left(\frac{9}{2y}+\frac{y}{2}\right)+\left(\frac{4}{z}+\frac{z}{4}\right)+\left(\frac{x}{4}+\frac{y}{2}+\frac{3z}{4}\right)\)

\(\ge13\)

Dấu "=" xảy ra tại x=2;y=3;z=4

27 tháng 2 2020

Để ý điểm rơi mà làm bạn :)

25 tháng 11 2021

A = 2 : x

Thay x = 0 vào biểu thức, ta được:

A = 2 : 0

A = 0

2xy : 2y

= ( 2y : 2y ) . ( x : 1 )

= x