Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Đặt \(a=\sqrt{x-4},b=\sqrt{y-4}\)với \(a,b\ge0\)thì pt đã cho trở thành:
\(2\left(a^2+4\right)b+2\left(b^2+4\right)a=\left(a^2+4\right)\left(b^2+4\right)\). chia 2 vế cho \(\left(a^2+4\right)\left(b^2+4\right)\)thì pt trở thành :
\(\frac{2b}{b^2+4}+\frac{2a}{a^2+4}=1\). Để ý rằng a=0 hoặc b=0 không thỏa mãn pt.
Xét \(a,b>0\). Theo BĐT AM-GM ta có: \(b^2+4\ge2\sqrt{4b^2}=4b,a^2+4\ge4a\)
\(\Rightarrow VT\le\frac{2a}{4a}+\frac{2b}{4b}=1\), dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a^2=4\\b^2=4\end{cases}\Leftrightarrow a=b=2\Leftrightarrow x=y=8}\)
Vậy x=8,y=8 là nghiệm của pt
gợi ý nè
1) \(ab+c=ab+c\left(a+b+c\right)\)....
2) nhiều cách lắm nhưng tớ chỉ đưa ra 2 cách ...có vẻ hay
đặt \(\sqrt{x}=a,\sqrt{y}=b\)
=>a3+b3=a4+b4=a5+b5
c1: ta có: \(\left(a^3+b^3\right)\left(a^5+b^5\right)=\left(a^4+b^4\right)^2\)......
c2: a5+b5=(a+b)(a4+b4)-ab(a3+b3)
=> 1=(a+b)-ab .......
3) try use UCT
4) tính sau =))
a: \(=\dfrac{\left|x+2\right|}{x-1}\)
b: \(=x-2y-\left|x-2y\right|\)\(=\left[{}\begin{matrix}x-2y-x+2y=0\\x-2y+x-2y=2x-4y\end{matrix}\right.\)
c: \(=\dfrac{\left|x+2\right|}{\left(x+2\right)\left(x-2\right)}=\pm\dfrac{1}{x-2}\)
Ta có: \(4x^2+2y^2-4xy+4+\sqrt{\left(x+y+z\right)^2}=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+y^2+4+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(2x-y\right)^2+y^2+\left|x+y+z\right|=-4\)
Mà \(VT\ge0\left(\forall x,y,z\right)\) => vô lý
=> PT vô nghiệm
\(4x^2+2y^2-4xy+4+\sqrt{\left(x+y+z\right)^2}=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+y^2+4+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(2x-y\right)^2+y^2+\left|x+y+z\right|+4=0\)(1)
Vì \(\left(2x-y\right)^2\ge0\); \(y^2\ge0\); \(\left|x+y+z\right|\ge0\forall x,y,z\)
\(\Rightarrow\left(2x-y\right)^2+y^2+\left|x+y+z\right|\ge0\forall x,y,z\)
\(\Rightarrow\left(2x-y\right)^2+y^2+\left|x+y+z\right|+4\ge4\forall x,y,z\)(2)
Từ (1) và (2) \(\Rightarrow\)Vô lý
Vậy không tìm được giá trị của x, y, z thỏa mãn đề bài
\(pt\left(1\right)\Leftrightarrow\dfrac{\left(x-y-4\right)\left(x^2+4x+y^2-4y\right)}{x-y}=0\)
\(x\ne y \rightarrow (x-y-4)(x^2+4x+y^2-4y)=0\)
D
D