K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2020

c) Đặt \(a=\sqrt{x-4},b=\sqrt{y-4}\)với \(a,b\ge0\)thì pt đã cho trở thành:

\(2\left(a^2+4\right)b+2\left(b^2+4\right)a=\left(a^2+4\right)\left(b^2+4\right)\). chia 2 vế cho \(\left(a^2+4\right)\left(b^2+4\right)\)thì pt trở thành : 

\(\frac{2b}{b^2+4}+\frac{2a}{a^2+4}=1\). Để ý rằng a=0 hoặc b=0 không thỏa mãn pt.

Xét \(a,b>0\). Theo BĐT  AM-GM ta có: \(b^2+4\ge2\sqrt{4b^2}=4b,a^2+4\ge4a\)

\(\Rightarrow VT\le\frac{2a}{4a}+\frac{2b}{4b}=1\), dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a^2=4\\b^2=4\end{cases}\Leftrightarrow a=b=2\Leftrightarrow x=y=8}\)

Vậy x=8,y=8 là nghiệm của pt

16 tháng 3 2017

gợi ý nè

1) \(ab+c=ab+c\left(a+b+c\right)\)....

2) nhiều cách lắm nhưng tớ chỉ đưa ra 2 cách ...có vẻ hay

đặt \(\sqrt{x}=a,\sqrt{y}=b\)

=>a3+b3=a4+b4=a5+b5

c1: ta có: \(\left(a^3+b^3\right)\left(a^5+b^5\right)=\left(a^4+b^4\right)^2\)......

c2: a5+b5=(a+b)(a4+b4)-ab(a3+b3)

=> 1=(a+b)-ab .......

3) try use UCT

4) tính sau =))

17 tháng 3 2017

gợi ý ??

a: \(=\dfrac{\left|x+2\right|}{x-1}\)

b: \(=x-2y-\left|x-2y\right|\)\(=\left[{}\begin{matrix}x-2y-x+2y=0\\x-2y+x-2y=2x-4y\end{matrix}\right.\)

c: \(=\dfrac{\left|x+2\right|}{\left(x+2\right)\left(x-2\right)}=\pm\dfrac{1}{x-2}\)

28 tháng 10 2020

Ta có: \(4x^2+2y^2-4xy+4+\sqrt{\left(x+y+z\right)^2}=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+y^2+4+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(2x-y\right)^2+y^2+\left|x+y+z\right|=-4\)

Mà \(VT\ge0\left(\forall x,y,z\right)\) => vô lý

=> PT vô nghiệm

28 tháng 10 2020

\(4x^2+2y^2-4xy+4+\sqrt{\left(x+y+z\right)^2}=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+y^2+4+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(2x-y\right)^2+y^2+\left|x+y+z\right|+4=0\)(1)

Vì \(\left(2x-y\right)^2\ge0\)\(y^2\ge0\)\(\left|x+y+z\right|\ge0\forall x,y,z\)

\(\Rightarrow\left(2x-y\right)^2+y^2+\left|x+y+z\right|\ge0\forall x,y,z\)

\(\Rightarrow\left(2x-y\right)^2+y^2+\left|x+y+z\right|+4\ge4\forall x,y,z\)(2)

Từ (1) và (2) \(\Rightarrow\)Vô lý 

Vậy không tìm được giá trị của x, y, z thỏa mãn đề bài

12 tháng 12 2017

\(pt\left(1\right)\Leftrightarrow\dfrac{\left(x-y-4\right)\left(x^2+4x+y^2-4y\right)}{x-y}=0\)

\(x\ne y \rightarrow (x-y-4)(x^2+4x+y^2-4y)=0\)