Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2015-2014}{2013-x}=\frac{1}{2013-x}\) có GTNN
\(\Leftrightarrow2013-x\) có GTNN
Vì x \(\in\) N và \(2013-x\ne0\) nên \(\Rightarrow2013-x=1\)
Khi đó \(x=2012\)
Vậy A đạt GTNN khi x = 2012
A = \(\frac{2015-2014}{2013-x}=\frac{1}{2013-x}\)
Để A đạt giá trị nhỏ nhất <=> \(\frac{1}{2013-x}\)đạt giá trị nhỏ nhất
=> 2013 - x đạt giá trị lớn nhất (2013 - x \(\ne\)0 ; 2013 - x > 0)
=> 2013 - x = 1 => x = 2012
Vậy...
A = \(\frac{2015-2014}{2013-x}\)=\(\frac{1}{2013-x}\) có GTNN
\(\Leftrightarrow\)\(2013-x\)Có GTNN
Vì x \(\in\)N và\(2013-x\ne0\) nên \(\Rightarrow\)\(2013-x=1\)
Khi đó \(x=2012\)
Vậy A đạt GTNN khi x = 2012
Muốn chúng nhỏ nhất thì chúng phải có ít chữ số nhất .
265 = 29 . 9 + 4
Vì 4 < 9 nên số đó là 49999....99 ( 29 chữ số 9 )
2014 = 223 . 9 + 7
Vì 7 < 9 nên số đó là 7999999...9999 ( 223 chữ số 9 )
A=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
A=\(\frac{1.2.3.4...2015}{2.3.4...2016}=\frac{1}{2016}\)
Hok tốt
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2015}\right).\left(1-\frac{1}{2016}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
= \(\frac{1}{2016}\)
Vậy ...