K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(\sqrt{7}-2\right)^2=11-4\sqrt{7}\)

\(\left(3-\sqrt{7}\right)^2=16-6\sqrt{7}=11-4\sqrt{7}+5-2\sqrt{7}\)

mà \(5-2\sqrt{7}< 0\)

nên \(\sqrt{7}-2< 3-\sqrt{7}\)

8 tháng 9 2021

Em cảm ơn ạ 

3 tháng 6 2020

\(\sqrt{32}+10\sqrt{7}+\sqrt{32}-10\sqrt{7}\)

\(=\left(\sqrt{32}+\sqrt{32}\right)+\left(10\sqrt{7}-10\sqrt{7}\right)\)

\(=\sqrt{16\times2}\times2\)

\(=\sqrt{\left(4\right)^2\times2}\times2\)

\(=4\sqrt{2}\times2\)

\(=8\sqrt{2}\)

5 tháng 11 2021

\(A=\sqrt{32}-3\sqrt{18}+6\sqrt{50}\\ A=4\sqrt{2}-9\sqrt{2}+30\sqrt{2}=25\sqrt{2}\)

5 tháng 11 2021

giúp e vs ạ :3

 

 

13 tháng 8 2020

Ta giả sử \(4\) và \(\sqrt{7}\) (*) là \(a\) và \(b\left(a,b>0\right)\) thì ta có điều hiển nhiên sau : \(a+b>a-b\)

Đặt căn ở hai bên ta được : \(\sqrt{a+b}>\sqrt{a-b}\)

Thế (*) vào ta được : \(\sqrt{4+\sqrt{7}}>\sqrt{4-\sqrt{7}}\)

Do VT > VP nên trừ ở VP đi một số thực dương sẽ không đổi chiều dấu 

Nên ta suy ra được \(\sqrt{4+\sqrt{7}}>\sqrt{4-\sqrt{7}}-\sqrt{2}\)

Hay viết cách khá là \(A>B\)

13 tháng 8 2020

A=Căn ( 4 + căn 7) ...... B= Căn ( 4 - Căn 7 ) - Căn 2
xét:
Nếu A < B
Thì Căn (4 + căn 7) > Căn (4 - Căn7) - Căn 2
Nếu Căn (4+ căn 7) = 0
Thì Căn (4+Căn7) - Căn 2 = 0
Mà B= Căn (4 - Căn 7) ( Tức nhỏ hơn Căn (4 + căn 7)
=> A > B

7 tháng 6 2016

\(\sqrt{4}=2\)

7=2+5

5=\(\sqrt{25}\)

\(\sqrt{25}>\sqrt{5}\)

=>\(\sqrt{4}+\sqrt{5}>7\)

7 tháng 6 2016

\(7=2+5=\sqrt{4}+\sqrt{25}.\)

Ta có : \(25>5\Rightarrow\sqrt{25}>\sqrt{5}\Rightarrow\sqrt{4}+\sqrt{25}>\sqrt{4}+\sqrt{5}\)

Vậy : \(\sqrt{4}+\sqrt{5}< 7\)

9 tháng 7 2018

Nếu đề bài là giải phương trình thì :

\(\sqrt{x+3}=\sqrt{x-3}\)

Đk : \(x\ge3\)

Bình phương hai vế :

\(\Rightarrow x+3=x-3\)

\(x+3-x+3=0\)

\(0x=-6\)

\(\Rightarrow\)phương trình vô nghiệm

a: \(B=\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}\)

\(=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{x-25}=\dfrac{1}{\sqrt{x}-5}\)

b: A=B|x-4|

\(\Leftrightarrow\left|x-4\right|=\dfrac{A}{B}=\sqrt{x}+2\)

\(\Leftrightarrow x-4=\sqrt{x}+2\)

=>x=9