Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(\dfrac{1}{243}\right)^6=\left(\dfrac{1}{3}\right)^{5\cdot6}=\left(\dfrac{1}{3}\right)^{30}\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{28}>\left(\dfrac{1}{243}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{3^4}\right)^7>\left(\dfrac{1}{243}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{81}\right)^7>\left(\dfrac{1}{243}\right)^6\)
mà \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{81}\right)^7\)
nên \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)
\(\left(\dfrac{3}{8}\right)^5\&\left(\dfrac{5}{243}\right)^3\)
\(\left(\dfrac{3}{8}\right)^5=\left(\dfrac{90}{240}\right)^5=\dfrac{90^5}{240^5}\)
\(\left(\dfrac{5}{243}\right)^3=\dfrac{5^3}{243^3}\)
\(=>\dfrac{90^5}{240^5}>\dfrac{5^3}{243^3}\)
\(=>\left(\dfrac{3}{8}\right)^5>\left(\dfrac{5}{243}\right)^3\)
a, 5300 và 3453
Ta có : 3400 < 3453
3400 = (34)100 = 81100
5300 = (53)100 = 125100
=> 3400 < 5300
=> 3400 < 3453 < 5300
=> 3453 < 5300
b,vì 31 < 32 = 25 nên : 3111 < 255
vì 17 > 16 = 24 nên : 1714 > 256 hay 256 < 1714
do 55 < 56 nên : 255 < 256
theo tính chất bắc cầu , ta được : 3111 < 255 < 256 < 1714
vậy : 3111 < 1714
a)230 và 320
Ta có: 230=(23)10=810
320=(32)10=910
Vì 810<910 nên 230<320
b)Ghi rõ đề
c) Ghi rõ đề
d)2711 và 818
Ta có 2711=(33)11=333
818=(34)8=332
Vì 333>332 nên 2711>818
e)32000 và 2300
Ta có 32000=(320)100
2300=(23)100=8100
Vì (320)100>8100 nên 32000>2300
Câu này mình thấy hơi vô lý, một bên quá lớn một bên quá nhỏ,bạn nên xem lại.
Chúc bạn học tốt!
a, 230 và 320
Ta có : 230 = (23)10 = 810
320 = (32)20 = 910
Do 810 < 910 => 230 < 320
@Kẹo Dẻo
a)\(27^2\)và \(4^6\)
\(27^2=\left(3^3\right)^2\)
\(4^6=\left(2^3\right)^2\)
\(3^3>2^3\)
b) \(3^{500}=\left(3^5\right)^{100}\)
\(7^{300}=\left(7^3\right)^{100}\)
\(7^3=343\)
\(3^5=243\)
\(\Rightarrow3^{500}< 7^{300}\)
c) \(8^5=4^5\cdot2^5\)
\(3\cdot4^7=3\cdot4^2\cdot4^5\)
\(3\cdot4^2>2^5\)
\(3\cdot4\cdot4=2\cdot2\cdot2\cdot2\cdot3>2\cdot2\cdot2\cdot2\cdot2\)
\(8^5< 3\cdot4^7\)
d) \(202^{303}=\left(202^3\right)^{101}\)
\(303^{202}=\left(303^2\right)^{101}\)
\(202^3>303^2\)
Nên
a) 5300 = 5300
b) 399 > 1121.
5300=5300
399 > 1121