Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+2^3+...+2^{10}\)
\(2A=2+2^2+2^3+2^4+...+2^{11}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{11}\right)-\left(1+2+2^2+2^3+...+2^{10}\right)\)
\(A=2^{11}-1< 2^{11}\)
\(B=2.2^2+3.2^3+4.2^4+...+10.2^{10}\)\(2B=2.2^3+3.2^4+4.2^5+...+10.2^{11}\)\(2B-B=\left(2.2^3-3.2^3\right)+\left(3.2^4-4.2^4\right)+...+\left(9.2^{10}-10.2^{10}\right)+10.2^{11}-2.2^2\)\(B=2^3\left(2-3\right)+2^4\left(3-4\right)+...+2^{10}\left(9-10\right)+10.2^{11}-2.2^2\)\(B=-2^3-2^4-....-2^{10}+10.2^{11}-2^3\)
\(B=-\left(2^3+2^4+...+2^{10}\right)+10.2^{11}-2^3\)
\(B=-\left(2^{11}-2^3\right)+10.2^{11}-2^3\)
\(B=-2^{11}+2^3+10.2^{11}-2^3\)
\(B=9.2^{11}\)
Ta cần so sánh: \(9.2^{11}\) và \(2^{14}\)
Hay \(9\) và \(2^3\)
\(9>8=2^3\Leftrightarrow B>2^{14}\)
Bài làm
Đặt a - b = x ; b - c = y ; c - a = z
=> x + y + z = 0
Ta có :
\(N=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2.\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2.\left(\frac{x+y+z}{xyz}\right)\)
=> \(N=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)( Vì x + y + z = 0 )
Vậy ta có đpcm
đặt A=2.22+3.23+....+n*2n
2A=2.23+3.24+...+n.2n+1
=>A-2A=2.22+(3.23-2.23)+(4.24-3.24)+...+(n-n+1).2n-n.2n+1
=>A=2.22+23+...+2n-n.2n+1=22+(22+23+...+2n+1)-(n+1)2n+1
=>A=-22-(22+23+...+2n+1)+(n+1)2n+1
đặt B=22+23+...+2n+1=>2B=23+...+2n+1=>2B-B=2n+2-22
=>B=2n+2-22
vậy A=22-2n+2+22+(n+1)2n+1=(n+1)2n+1-2n+2=2n+1(n+1-2)=(n-1)2n+1=2(n-1)2n
theo bài cho A=2(n-1)2n=2n+10=>2(n-1)=210=>n-1=29=512=>n=513
vậy n=513