Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có \(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\) =>\(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)
=>\(\frac{m-1}{2}=\frac{2}{n}\)
=> n(m-1) = 4
=> n và m-1 thuộc Ư(4)={1;2;4}
Ta có bảng sau:
m-1 | 1 | 2 | 4 |
n | 4 | 2 | 1 |
m | 2 | 3 | 5 |
Vậy (m;n)=(2;4),(3;2),(5;1)
a) Vì \(\frac{87}{39}>1\)
\(\frac{2015}{2017}< 1\)
\(\Rightarrow\frac{87}{39}>\frac{2015}{2017}\)
\(\frac{n}{n+1}\)và \(\frac{n+1}{n+3}\)
\(\Rightarrow\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\left(n+3\right)}\)
\(\Rightarrow\frac{n+1}{n+3}=\frac{\left(n+1\right)^2}{\left(n+3\right)\left(n+1\right)}\)
\(\Rightarrow n\cdot\left(n+3\right)=n^2+3n\)
\(\Rightarrow\left(n+1\right)^2=n^2+2n+1\)
Dấu bằng chỉ xảy ra khi n = 1
Còn với mọi trường hợp n > 1 thì
\(\frac{n}{n+1}>\frac{n+1}{n+3};n^2+3n>n^2+2n+1\)
Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)
\(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)
Nên \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)
\(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)
Nne : \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)