K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

\(\dfrac{-178}{179}>-1>\dfrac{-191}{189}\\ \dfrac{127}{129}=1-\dfrac{2}{129};\dfrac{871}{873}=1-\dfrac{2}{873}\\ \dfrac{2}{129}>\dfrac{2}{873}\left(129< 873\right)\Leftrightarrow1-\dfrac{2}{129}< 1-\dfrac{2}{873}\Leftrightarrow\dfrac{127}{129}< \dfrac{871}{873}\)

Bài 1:

a: Sửa đề: 1/3^200

1/2^300=(1/8)^100

1/3^200=(1/9)^100

mà 1/8>1/9

nên 1/2^300>1/3^200

b: 1/5^199>1/5^200=1/25^100

1/3^300=1/27^100

mà 25^100<27^100

nên 1/5^199>1/3^300

a: -3/100=-9/300; -2/3=-200/300

=>-3/100>-2/3

b: -3/5=-9/15

-2/3=-10/15

=>-3/5>-2/3

c: -5/4<-1<-3/8

d: -2/3=-8/12; -3/4=-9/12

=>-2/3>-3/4

e: -267/268>-1

-1>-1347/1343

=>-267/268>-1347/1343

20 tháng 6 2023

a, A = \(\dfrac{2022.2023-1}{2022.2023}\) = \(\dfrac{2022.2023}{2022.2023}\) - \(\dfrac{1}{2022.2023}\) = 1 - \(\dfrac{1}{2022.2023}\)

B = \(\dfrac{2021.2022-1}{2021.2022}\) =  \(\dfrac{2021.2022}{2021.2022}\)  - \(\dfrac{1}{2021.2022}\) = 1 - \(\dfrac{1}{2021.2022}\) 

Vì \(\dfrac{1}{2022.2023}\) < \(\dfrac{1}{2021.2022}\)

Nên A > B

b, C = \(\dfrac{2022.2023}{2022.2023+1}\)  

    C = \(\dfrac{2022.2023+1-1}{2022.2023+1}\) = \(\dfrac{2022.2023+1}{2022.2023+1}\) - \(\dfrac{1}{2022.2023+1}\) 

     C = 1  - \(\dfrac{1}{2022.2023+1}\)

     D = \(\dfrac{2023.2024}{2023.2024+1}\) = \(\dfrac{2023.2024+1-1}{2023.2024+1}\) 

     D = 1 - \(\dfrac{1}{2023.2024+1}\)

Vì \(\dfrac{1}{2022.2023+1}\) > \(\dfrac{1}{2023.2024+1}\)

Nên C < D 

 

27 tháng 1 2021

\(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}\)

Ta có :

+) \(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}\)

+) \(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}\)

\(\Leftrightarrow S< \dfrac{1}{5}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{40}+\dfrac{1}{40}\)

\(\Leftrightarrow S< \dfrac{1}{2}\)

Vậy,,,

Ta có: \(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{2}{8}=\dfrac{1}{4}\)

\(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{2}{40}=\dfrac{1}{20}\)

Do đó: \(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{4}+\dfrac{1}{20}=\dfrac{6}{20}=\dfrac{3}{10}\)

\(\Leftrightarrow\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{3}{10}+\dfrac{1}{5}=\dfrac{3}{10}+\dfrac{2}{10}=\dfrac{1}{2}\)

hay \(S< \dfrac{1}{2}\)(đpcm)

28 tháng 9 2021

\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)

\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)

a: \(\dfrac{-13}{40}< \dfrac{-12}{40}\)

\(\dfrac{-5}{6}>\dfrac{-91}{104}\)