Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn cần viết lại đề bằng công thức toán (gõ công thức trong hộp có biểu tượng $\sum$) để được hỗ trợ tốt hơn. Nhìn đề thế này rối mắt quá.
Ta có:
\(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
Ta có : \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\frac{8-2\sqrt{15}}{2}=4-\sqrt{15}\)
Thay \(x=4-\sqrt{15}\) vào pt được :
\(\left(4-\sqrt{15}\right)^2.a+\left(4-\sqrt{15}\right)b+1=0\Leftrightarrow\left(31-8\sqrt{15}\right)a+\left(4-\sqrt{15}\right)b+1=0\)
\(\Leftrightarrow\sqrt{15}\left(-8a-b\right)+\left(31a+4b+1\right)=0\)
Vì a,b là số hữu tỉ nên ta có : \(\begin{cases}8a+b=0\\31a+4b=-1\end{cases}\) \(\Leftrightarrow\begin{cases}a=1\\b=-8\end{cases}\)
Ta có:\(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{5-3}=\frac{8-2\sqrt{15}}{2}=4-\sqrt{15}\)
Thay vào ta có:
\(a\cdot\left(4-\sqrt{15}\right)^2+b\cdot\left(4-\sqrt{15}\right)+1=0\)
\(\Leftrightarrow a\cdot\left(31-8\cdot\sqrt{15}\right)+4b-b\cdot\sqrt{15}+1=0\)
\(\Leftrightarrow\left(31a+4b+1\right)-\left(8a+b\right)\cdot\sqrt{15}=0\)
Do a,b hữu tỉ \(\Rightarrow\begin{cases}31a+4b+1=0\\8a+b=0\end{cases}\)\(\Leftrightarrow\begin{cases}31a-32a+1=0\\b=-8a\left(1\right)\end{cases}\)
31a-3a+1=0 <=>a=1.Từ (1) =>b=-8
Vậy a= 1 và b= -8
a) Có \(x+1< x+2\)
\(\Rightarrow\sqrt{x+1}< \sqrt{x+2}\)
\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+2}}< 1\)
b) Vì \(\sqrt{x+1}< \sqrt{x+2}\)
\(\Rightarrow\sqrt{x+1}.\sqrt{x+1}.\sqrt{x+2}< \sqrt{x+2}.\sqrt{x+1}.\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{x+1}^2.\sqrt{x+2}< \sqrt{x+2}^2.\sqrt{x+1}\)
\(\Rightarrow\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}< \frac{\sqrt{x+1}}{\sqrt{x+2}}\)
hay \(\frac{\sqrt{x+1}}{\sqrt{x+2}}>\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}\)