Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.Ta có : = (111.3)111.4 = ( 1114 . 34 )111=
= ( 111 . 4 )111.3 = ( 1113.43)111 =
Vì (1114.81)111 > ( 1113.64 )111 => 333444 > 444333
a. 1030 = ( 103 )10=100010
2100 = ( 210 )10=102410
Vì 100010<102410 nên 1030<2100
Ta có:
\(5^{300}=\left(5^2\right)^{100}=25^{100}\)
\(3^{453}>3^{450}=3^{3.150}=\left(3^3\right)^{150}=27^{150}\)
Vì 25 < 27 nên 5300 < 5453
mk học như vậy
\(3^{453}>3^{450}=\left(3^3\right)^{150}=27^{150}>25^{150}=5^{300}\)
Vậy \(3^{453}>5^{300}\)
Ta có :
5300 = (52)150 = 25150
3453 > 3450 = (33)150 = 27150
Vì 25150 < 27150 \(\Rightarrow\)5300 < 3453
a, 1920 > 98
b, 540 < 62010
c, Ta có: \(2^{161}=2^{7.23}=\left(2^7\right)^{23}=128^{23}\)
=> 12823 > 1340 hay 2161 > 1340
Ta sử dụng tính chất bắt cầu :
Ta thấy : \(2^{161}>2^{160}\)
Mà \(2^{160}=\left(2^4\right)^{40}=16^{40}\)
Ta so sánh :
\(16^{40}>13^{40}\Rightarrow13^{40}< 2^{161}\)
1340 và 2161
Ta có :
2161 > 2160 = ( 24 )40 = 1640
Vì 1340 < 1640
Nên 1340 < 2161
1/ \(13^{40}< 16^{40}=\left(2^4\right)^{40}=2^{160}< 2^{161}\)
2/ \(5^{300}=\left(5^2\right)^{150}=25^{150}\)
\(3^{453}=\left(3^3\right)^{151}=27^{151}\)
\(\Rightarrow25^{150}< 27^{150}< 27^{151}\Rightarrow5^{300}< 3^{453}\)