K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

Ta có: 

\(10A=\frac{10^{2015}+20200}{10^{2015}+2020}=1+\frac{18180}{10^{2015}+2020}\)

\(10B=\frac{10^{2016}+20200}{10^{2016}+2020}=1+\frac{18180}{10^{2016}+2020}\)

Vì \(10^{2016}+2020>2^{2015}+2020\)

=> \(\frac{18180}{10^{2016}+2020}< \frac{18180}{10^{2015}+2020}\)

=> \(1+\frac{18180}{10^{2016}+2020}< 1+\frac{18180}{10^{2015}+2020}\)

=> 10B < 10A

=> B<A

29 tháng 4 2020

\(A=\frac{10^{2014}+2020}{10^{2015}+2020}\)\(< \) \(B=\frac{10^{2015}+2020}{10^{2016}+2020}\)

chúc bạn học tốt

study well

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

7 tháng 3 2020

Tính tổng:

S1=1+(-2)+3+(-4)+...+2015+(-2016). 

S1=[1+(-2)]+[3+(-4)]+...+[2015+(-2016)]

S1=-1+(-1)+...+(-1)           ( có 1008 số -1 )

S1=-1.1008

S1=-1008

S3=1+(-3)+5+(-7)+...2013+(-2015)

S3=[1+(-3)]+[5+(-7)]+...+[2013+(-2015)]

S3=-2+(-2)+...+(-2)      ( có 1008 số -2)

S3=-2016

7 tháng 3 2020

cho mình cả s2 bạn ơi,thank bạn

10 tháng 3 2020

ta có \(A=\frac{2020^{10}+2}{2020^{11}+2}=>2020A=\frac{2020^{11}+4040}{2020^{11}+2}=1+\frac{4038}{2020^{11}+2}\)(1)

\(B=\frac{2020^{11}+2}{2020^{12}+2}=>2020B=\frac{2020^{12}+4040}{2020^{12}+2}=1+\frac{4038}{2012^{12}+2}\)(2)

từ 1 and 2 => 2020B<2020A

=> A>B

Ta có B=\(\frac{2020^{11}+2}{2020^{12}+2}\)

suy ra \(B< \frac{\left(2020^{11}+2\right)+2018}{\left(2020^{12}+2\right)+2018}=\frac{2020^{11}+2020}{2020^{12}+2020}=\frac{2020\left(2020^{10}+2\right)}{2020\left(2020^{11}+2\right)}=\frac{2020^{10}+2}{2020^{11}+2}\)

nên A > B

\(10A=\dfrac{10^{2015}+2016+9\cdot2016}{10^{2015}+2016}=1+\dfrac{18144}{10^{2015}+2016}\)

\(10B=\dfrac{10^{2016}+9+18144}{10^{2016}+2016}=1+\dfrac{18144}{10^{2016}+2016}\)

mà \(\dfrac{18144}{10^{2015}+2016}>\dfrac{18144}{10^{2016}+2016}\)

nên A>B

15 tháng 4 2020

Trả lời :

- 2 bn kia ở trong câu hỏi này có ai làm đúng đâu.

- Chúc bạn học tốt !

- Tk cho mk nha !

16 tháng 5 2022

Ta có:

\(10A=\dfrac{10\left(10^{2020}+1\right)}{10^{2021}+1}=\dfrac{10^{2021}+10}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)

\(10B=\dfrac{10\left(10^{2021}+1\right)}{10^{2022}+1}=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

⇒ \(10A>10B\) ( vì \(\dfrac{9}{10^{2021}+1}>\dfrac{9}{10^{2022}+1}\) )

Suy ra:  \(A>B\)