Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=2016.2018\)
\(\Rightarrow A=2016\left(2017+1\right)\)
\(\Rightarrow A=2016.2017+2016\)
Ta lại có :
\(B=2017.2017\)
\(\Rightarrow B=2017.\left(2016+1\right)\)
\(\Rightarrow B=2017.2016+2017\)
Ta thấy: \(2017>2016\)
\(\Rightarrow2017.2016+2017>2017.2016+2016\)
\(\Rightarrow B>A\)
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)
Gọi tử số của phân số là a, mẫu số là b.
Phân số cần tìm có dạng: \(\frac{a}{b}\)
Theo đề, ta có \(\frac{a}{b}=\frac{a+2015}{b+2016}\)
\(\Rightarrow a\left(b+2016\right)=b\left(a+2015\right)\)
\(ab+2016a=ab+2015b\)
\(\Rightarrow2016a=2015b\)
\(\Rightarrow\frac{a}{b}=\frac{2015}{2016}\)
Vậy phân số cần tìm là \(\frac{2015}{2016}\)
\(A=\frac{2015}{2016}+\frac{2016}{2017}=1-\frac{1}{2016}+1-\frac{1}{2017}>1\)
\(B=\frac{2015+2016}{2016+2017}< \frac{2016+2017}{2016+2017}=1\)
Suy ra \(A>B\).
\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\)\(\frac{2017}{2016+2017+2018}\)
ta có :
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
nên \(P>Q\)
Q=2015+2016+2017/2016+2017+2018=+2018+2016/2016+2017+2018+2017/2016+2017+2018
vì 2015/2016>2015/2016+2017+2018[1]
2016/2017>2016+2017+2018[2]
2017/2018>2016+2017+2018[3]
từ [1] [2] [3] suy ra P>Q
- \(A=\frac{2015}{2016}+\frac{2016}{2017}>1;\)
- \(B=\frac{2015+2016}{2016+2017}< 1\)
- Nên A>B
A = 2016 x 2016
A = (2015 + 1) x 2016
A = 2015 x 2016 + 2016
B = 2015 x 2017
B = 2015 x (2016 + 1)
B = 2015 x 2016 + 2015
Vì 2016 > 2015
=> A > B
A = \(2016^2\)
B = \(\left(2016-1\right)\left(2016+1\right)=2016\left(2016+1\right)-\left(2016+1\right)\)= \(2016^2+2016-2016-1\)= \(2016^2-1\)
\(\Rightarrow A>B\). Vậy A > B