K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

a) ta có: \(1-\frac{2016}{2017}=\frac{1}{2017}\)

\(1-\frac{2017}{2018}=\frac{1}{2018}\)

\(\Rightarrow\frac{1}{2017}>\frac{1}{2018}\Rightarrow1-\frac{2016}{2017}>1-\frac{2017}{2018}\Rightarrow\frac{2016}{2017}< \frac{2017}{2018}\)

b) ta có: \(\frac{2017}{2016}-1=\frac{1}{2016};\frac{2018}{2017}-1=\frac{1}{2017}\)

\(\Rightarrow\frac{1}{2016}>\frac{1}{2017}\Rightarrow\frac{2017}{2016}-1>\frac{2018}{2017}-1\Rightarrow\frac{2017}{2016}>\frac{2018}{2017}\)

20 tháng 6 2018

Tru 1 moi phan so roi so sanh nha 'O_O"

27 tháng 6 2019

\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)

\(\Rightarrow A=(1-\frac{1}{2017})+(1-\frac{1}{2018})+(1-\frac{1}{2019})\)

\(\Rightarrow A=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

\(\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)<\(\frac{3}{2017}\)<\(1\)

\(\Rightarrow A\)>\(3-1=2\)

\(B=\frac{2016+2017+2018}{2017+2018+2019}\)

\(\Rightarrow B=1-\frac{3}{6054}\)

\(\Rightarrow B=1-\frac{1}{2018}\)

\(B\)<\(1\);\(A\)>\(2\)

\(\Rightarrow A\)>\(B\)

28 tháng 9 2017

ta xét \(\frac{2016}{2017}+\frac{2017}{2018}=\frac{2016.2018}{2017.2018}+\frac{2017.2017}{2017.2018}\)

\(=\frac{2016.2018+2017.2017}{2017.2018}\)

Ta thấy \(2016+2017< 2016.2018+2017.2017\)

và \(2017+2018< 2017.2018\)

\(\Rightarrow\frac{2016+2017}{2017+2017}< \frac{2016}{2017}+\frac{2017}{2018}\)

28 tháng 9 2017

lấy 2016+2017/2017+2018-2016/2017+2017/2018=0.(9)==>2016+2017/2017+2018>2016/2017+2017/2018

16 tháng 2 2020

Ta có: \(\frac{1}{2}A=\frac{2^{2018}-3}{2^{2017}-1}.\frac{1}{2}=\frac{2^{2018}-3}{2^{2018}-2}=\frac{2^{2018}-2-1}{2^{2018}-2}=1-\frac{1}{2^{2018}-2}\)

Tương tự ta có: \(\frac{1}{2}B=1-\frac{1}{2^{2017}-2}\)

Vì \(2^{2018}>2^{2017}\)\(\Rightarrow2^{2018}-2>2^{2017}-2\)

\(\Rightarrow\frac{1}{2^{2018}-2}< \frac{1}{2^{2017}-2}\)\(\Rightarrow1-\frac{1}{2^{2018}-2}>1-\frac{1}{2^{2017}-2}\)

hay \(\frac{1}{2}A>\frac{1}{2}B\)\(\Rightarrow A>B\)( vì \(\frac{1}{2}>0\))

Vậy \(A>B\)

Nhân cả hai tử của \(A\)và \(B\)với 2 , ta được :

\(10A=10.\left(\frac{10^{2016}+1}{10^{2017}+1}\right)=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{2^{2017}+1}\)

\(10B=10\left(\frac{10^{2017}+1}{10^{2018}+1}\right)=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}}=1+\frac{9}{10^{2018}+1}\)

Vì \(1=1;9=9\)

\(\Rightarrow\)Ta so sánh mẫu , ta có:

\(10^{2017}< 10^{2018}\)

\(\Rightarrow10^{2017}+1< 10^{2018}+1\)

\(\Rightarrow1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)

\(\Rightarrow10A>10B\)

Hay \(A>B\)

19 tháng 7 2018

\(A=\frac{5^{2016}+1}{5^{2017}+1}\)

\(\Rightarrow5A=\frac{5^{2017}+5}{5^{2017}+1}=1+\frac{4}{5^{2017}+1}\)

\(B=\frac{5^{2017}+1}{5^{2018}+1}\)

\(\Rightarrow5B=\frac{5^{2018}+5}{5^{2018}+1}=1+\frac{4}{5^{2018}+1}\)

Do \(\frac{4}{5^{2018}+1}< \frac{4}{5^{2017}+1}\)

\(\Rightarrow5A>5B\Leftrightarrow A>B\)

1 tháng 11 2019

Ta có:

\(\Rightarrow A=B.\)

\(\Rightarrow A^{2017}=B^{2017}\)

\(\Rightarrow\left(A^{2017}-B^{2017}\right)^{2018}=\left(B^{2017}-B^{2017}\right)^{2018}=0^{2018}=0.\)

Vậy \(\left(A^{2017}-B^{2017}\right)^{2018}=0.\)

Chúc bạn học tốt!

6 tháng 4 2018

id nhu 1 tro dua

10 tháng 4 2018

\(\frac{B}{A}=\frac{\frac{2^{2017}-3}{2^{2016}-1}}{\frac{2^{2018}-3}{2^{2017}-1}}=\frac{2^{2017}-3}{2^{2016}-1}\cdot\frac{2^{2017}-1}{2^{2018}-3}\)

\(=\frac{2^{4034}-4.2^{2017}+3}{2^{4034}-3.2^{2016}-2^{2018}+3}\)

Ta có: 4.22017 = 22019 

3.22016 + 22018 < 4.22016 + 22018 = 2.22018 = 22019

=> 4.22017 > 3.22016 + 22018 

=>  - 4.22017 < - 3.22016 - 22018

\(\Rightarrow\frac{2^{4034}-4.2^{2017}+3}{2^{4034}-3.2^{2016}-2^{2018}+3}< 1\)

=> B < A