Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2011^2012-2011^2011= 2011^2011 * 2011 -2011^2011= 2011^2011 *(2011-1)= 2011^2011 *2010
B=2011^2013-2011^2012=2011^2012*2011- 2011^2012= 2011^2012 *(2011-1) = 2011^2012 *2010
vì 2011^2011*2010 < 2011^2012*2010 nên A<B
Ta có : 2011^2013 x M = (2010^2012 x 2011 + 2011^2013)^2013 > (2010^2013 + 2011^2013)^2013 = N x (2010^2013 + 2011^2013)
Do đó: 2011^2013 x M > N x (2010^2013 + 2011^2013)
<=> M > N x [(2010/2011)^2013 + 1] ==> M > N (điều phải chứng minh)
Ta có :
B = \(\dfrac{2011}{2012}\) + \(\dfrac{2012}{2013}\) .
\(\dfrac{2011}{2012}\) > \(\dfrac{2011}{2012+2013}\) .
\(\dfrac{2012}{2013}\) > \(\dfrac{2012}{2012+2013}\) .
\(\Rightarrow\) A < B .
-Ta có: $B<1\Rightarrow B<\frac{2013^{2011}-2+2015}{2013^{2012}-2+2015}=\frac{2013^{2011}+2013}{2013^{2012}+2013}=\frac{2013(2013^{2010}+1)}{2013(2013^{2011}+1)}=\frac{2013^{2010}+1}{2013^{2011}+1}=A$
-Vậy: B<A
A = 20112012 - 20112011
A = 20112011.(2011 - 1)
A = 20112011.2010
B = 20112013 - 20112012
B = 20112012.(2011 - 1)
B = 20112012.2010
Vì 20112011 < 20112012
=> A < B