Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(1/243)^9 = [1/(3^5)]^9 = [(1/3)^5]^9=(1/3)^13`
Vì: `1/3 > 1/83`
`=> (1/3)^13 > 1/(83)^13`.
b)
ta có : \(\frac{1313}{9191}=\frac{13}{91}=\frac{1}{7}\)
\(\frac{1111}{7373}=\frac{11}{73}>\frac{11}{77}\)
Mà \(\frac{11}{77}=\frac{1}{7}\)
\(\Rightarrow\frac{11}{73}>\frac{1}{7}\)
Vậy \(\frac{1313}{9191}< \frac{1111}{7373}\)
1-21/52=31/52 1-213/523=310/523 ta có 31/52=310/520
vì 310/520<310/523 nên 21/52 < 213/523
phần còn lại như bạn bên trên nha! chọn mk nhé!
a) \(49^{12}\)và \(5^{40}\)
\(49^{12}=\left(49^3\right)^4=\left(\left(7^2\right)^3\right)^4=\left(7^6\right)^4\)
\(5^{40}=\left(5^{10}\right)^4\)
\(7^6=\left(7^3\right)^2>\left(5^5\right)^2\)vì \(7^2\cdot7>5^3\cdot5^2\)
\(\Rightarrow49^{12}< 5^{40}\)
\(\left(-\frac{1}{16}\right)^{100}=\left(-\left(\frac{-1}{2}\right)^4\right)^{100}\)
\(=\left(-\frac{1}{2}\right)^{400}< \left(-\frac{1}{2}\right)^{500}\)
Ta có :
\(\frac{1}{243^9}=\frac{1}{\left(81.3\right)^9}=\frac{1}{81^9.27^3}>\frac{1}{81^9.81^3}=\frac{1}{81^{11}}>\frac{1}{8^{12}}>\frac{1}{8^{13}}\)
\(\Rightarrow\frac{1}{243^9}>\frac{1}{83^{13}}\)
mình chắc chắn luôn
a) \(\left(\frac{1}{243}\right)^9=\left(\frac{1}{3^5}\right)^9=\frac{1}{3^{45}}\)
\(\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{81}\right)^{13}=\left(\frac{1}{3^4}\right)^{13}=\frac{1}{3^{52}}< \frac{1}{3^{45}}=\left(\frac{1}{243}\right)^9\Rightarrow\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{243}\right)^9\)
b) 199010 + 19909
= 19909 ( 1990 + 1 )
= 19909 . 1991 < 199110 = 19919 . 1991
Vậy 199010 + 19909 < 199110
Sửa đề: \(\left(\dfrac{1}{81}\right)^{13}\)
Ta có: \(\left(\dfrac{1}{243}\right)^9=\left(\dfrac{1}{3}\right)^{45}\)
\(\left(\dfrac{1}{81}\right)^{13}=\left(\dfrac{1}{3}\right)^{52}\)
mà \(\left(\dfrac{1}{3}\right)^{45}< \left(\dfrac{1}{3}\right)^{52}\)
nên \(\left(\dfrac{1}{243}\right)^9< \left(\dfrac{1}{81}\right)^{13}\)
a, <
b, <
c, >
d, >
bn làm chi tiết nhé!!!!!!!!!!!!!!!!!!!!!!!!!!