Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=1-\frac{1}{2019}+1-\frac{1}{2020}+1-\frac{1}{2021}+1+\frac{3}{2018}$
$=4+(\frac{1}{2018}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2020}+\frac{1}{2018}-\frac{1}{2021})$
$> 4+0+0+0+0=4$
Lời giải:
\(9B=\frac{9^{2019}+9}{9^{2019}+1}=1+\frac{8}{9^{2019}+1}> 1+\frac{8}{9^{2020}+1}=\frac{9^{2020}+9}{9^{2020}+1}=9A\)
$\Rightarrow B>A$
\(1-\frac{2018}{2019}=\frac{1}{2019}.\)
\(1-\frac{2019}{2020}=\frac{1}{2020}.\)
Ta có: 2019<2020 <=> \(\frac{1}{2019}>\frac{1}{2020}.\)
\(\Rightarrow-\frac{1}{2019}< -\frac{1}{2020}.\)
\(\Rightarrow1-\frac{1}{2019}< 1-\frac{1}{2020}.\)
\(\Rightarrow\frac{2018}{2019}< \frac{2019}{2020}.\)
để bằng 1 thì 2019/2020 phải cộng với 1/2020
để bằng 1 thì 2018/2019 phải cộng với 1/2019
vì 1/2020<1/2019
=> 2019/2020>2018/2019
Ta có: \(\frac{2019}{2020}=1-\frac{1}{2020}\)
\(\frac{2018}{2019}=1-\frac{1}{2019}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\) nên \(1-\frac{1}{2019}< 1-\frac{1}{2020}\)
hay \(\frac{2018}{2019}< \frac{2019}{2020}\)
bạn nào làm được thì giúp mình với còn bài này thì mình không biết làm. sorry nha
AI NÓI TỚ NÓI SAI, CÓ NÓI VỀ BÀI ĐÂU MÀ SAI ĐIÊN À MẤY BẠN KIA
Lời giải:
Ta có:
\(A+1=\frac{2019^{2019}+2019^{2020}}{2019^{2019}-1}=\frac{2019^{2019}.2020}{2019^{2019}-1}\)
\(B+1=\frac{2019^{2019}+2019^{2018}}{2019^{2018}-1}=\frac{2019^{2018}.2020}{2019^{2018}-1}\) \(=\frac{2019^{2019}.2020}{2019^{2019}-2019}>\frac{2019^{2019}.2020}{2019^{2019}-1}\)
$\Rightarrow B+1>A+1$
$\Rightarrow B>A$
Một số nguyên âm nhân với 1 số nguyên dương có kết quả là 1 số nguyên âm nên (-2018).(+2019)<0
(-2019).(+2020)<0