Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+201}\)
Mà \(201\frac{200}{201+202}\)
\(\frac{201}{202}>\frac{201}{201+202}\)
=> \(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
\(\frac{200}{201}+\frac{201}{202}=1,99...>1>\frac{401}{403}=\frac{200+201}{201+202}\)
\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+201}\)
Mà \(201< 201+202\Rightarrow\frac{200}{201}>\frac{200}{201+202}\)
\(\frac{201}{202}>\frac{201}{201+202}\)
Vậy \(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
Gọi d là UCLN(n,n+1)
Ta có:n+1 chia hết cho d
n chia hết cho d
=>(n+1)-n chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số n/n+1 tối giản
ta co:(n,n+1)=dn
talai co:(n+1)-n=1 chia het cho d suy ra d=1.vayn/n+1 toi gian
b)2014/2014*2015=2014:2014/2014*2015:2014=1/2015(rút gọn phân số)
2015/2015*2015=2015:2015/2015*2016:2015=1/2016(rút gọn phân số)
Mà 1/2015>1/2016
=>2014/2014*2015>2015/2015*2015
Ta có:\(\frac{200}{201}>\frac{200}{201+202}và\frac{201}{202}>\frac{201}{201+202}\)
Suy ra\(\frac{200}{201}+\frac{201}{202}>\frac{200}{201+202}+\frac{201}{201+202}=\frac{200+201}{201+202}\)
Vậy\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
Ta có: \(\frac{200}{201}+\frac{201}{202}=\frac{200}{201+202}+\frac{201}{201+202}\)
Mà: \(201< 201+202\Rightarrow\frac{200}{201}>\frac{200}{201+202}\)
\(\frac{201}{202}>\frac{201}{201+202}\)
\(\Rightarrow\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
Dễ thấy 200+201/201+202<1
Ta có 200/201=1-1/201;201/202=1-1/202
=>200/201+201/202=1-1/201+1-1/202
=1-1/201+1-1/202
=(1+1)-(1*201+1/202)
=2-(1/201+1/202)
Đễ thấy 1/201+1/202<1
=>2-(1/201+1/202)>1
Mà 200+201/201+202<1
=>200/201+201/202>200+201/201+202
a)
Vì \(\frac{2009}{2010}< 1\Rightarrow\frac{2009}{2010}< \frac{2009+1}{2010+1}=\frac{2010}{2011}\)
Cần nhớ:
Nếu: \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\left(n\inℕ^∗\right)\)
Và tương tự: \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\left(n\inℕ^∗\right)\)
b)Ta có:
\(\frac{1}{3^{400}}=\frac{1}{\left(3^4\right)^{100}}=\frac{1}{81^{100}}\)
\(\frac{1}{4^{300}}=\frac{1}{\left(4^3\right)^{100}}=\frac{1}{64^{100}}\)
Vì: \(81^{100}>64^{100}\Leftrightarrow\frac{1}{81^{100}}< \frac{1}{64^{100}}\Leftrightarrow\frac{1}{3^{400}}< \frac{1}{4^{300}}\)
c) Ta có:
\(\frac{200+201}{201+202}=\frac{401}{403}< 1\)
\(\frac{200}{201}+\frac{201}{202}=1-\frac{1}{201}+1-\frac{1}{202}=2-\left(\frac{1}{201}+\frac{1}{202}\right)>1\)
=>\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
1 Câu hỏi của Lê Thị Khánh Ngân - Toán lớp 6 - Học toán với OnlineMath
2.Câu hỏi của đỗ minh cường - Toán lớp 6 - Học toán với OnlineMath
3.Câu hỏi của Nguyễn Hoàng - Toán lớp 7 | Học trực tuyến
4.Câu hỏi của Nguyễn Minh Hiếu - Toán lớp 6 - Học toán với OnlineMath
Chứng minh
a, cho biểu thức A=5/n-1(n€Z)
Tìm điều kiện của n để A là ps . Tìm tất cả giá trị nguyên của n để A là số nguyên
b, chứng minh ps n/n+1 là ps tối giản (n€N và n khác 0)
c*, chứng tỏ rằng 1/1.2+1/2.3+1/3.4+...+1/49.50<1
Ta có:
\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+202}\)
Do\(\frac{200}{201}>\frac{200}{201+202},\frac{201}{202}>\frac{201}{201+202}\)
\(\Rightarrow\frac{200}{201}+\frac{201}{202}>\frac{200}{201+202}+\frac{201}{201+202}\)
\(\Rightarrow\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
Vậy\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)