Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
33n+1 = 9n+2
33n+1 = 32(n+2)
33n+1 = 32n+4
3n + 1 = 2n + 4
2n - 3n = 1 - 4
-n = -3
n = 3
\(3^{3n+1}=9^{n+2}=\left(3^2\right)^{2n+2}=2^{4n+4}=>3n+1=4n+4=>n=-3\)
3n+1 chia hết cho 2n+3
=> 6n+2 chia hết cho 2n+3
=> 6n+9-7 chia hết cho 2n+3
Vì 6n+9 chia hết cho 2n+3
=> -7 chia hết cho 2n+3
=> 2n+3 thuộc Ư(-7)
2n+3 | n |
1 | -1 |
-1 | -2 |
7 | 2 |
-7 | -5 |
Mà n là số tự nhiên
=> n = 2
Áp dụng tính chất sau \(\left(a-1\right)\left(a+1\right)=a^2-1\)(\(a\in Z\)) ta được:
\(\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n+2\right).\left[\left(n+1\right)\left(n+3\right)\right]=\left(n+2\right).\left[\left(n+2\right)^2-1\right]\)
Do \(n+2\) và \(\left(n+2\right)^2-1\) là hai số nguyên tố cùng nhau nên nếu \(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là số chính phương thì \(n+2\) và \(\left(n+2\right)^2-1\) cũng là các số chính phương
Do n là các số nguyên dương nên \(n+2\ge2\)
Với \(n+2\ge2\Rightarrow\left(n+2\right)^2-1\) không là số chính phương
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)\) không là số chính phương
\(3^{3n+1}=9^{n+2}\)
\(3^{3n+1}=3^{2.\left(n+2\right)}\)
\(3^{3n+1}=3^{2n+4}\)
=> 3n + 1 = 2n + 4
=> 3n - 2n = 4 - 1
=> n = 3