Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Sử dụng bổ đề. Với $f(x)$ có hệ số nguyên thì $f(a)-f(b)\vdots a-b$ với $a,b$ là nguyên khác nhau.
Áp dụng vào bài toán, ta dễ dàng chỉ ra $g(x^3)-g(-1)\vdots x^3+1\vdots x^2-x+1(1)$
Giả sử $f(x)=x^2+xg(x^3)\vdots x^2-x+1$
$\Leftrightarrow g(x^3)+x\vdots x^2-x+1(2)$
$(1);(2)\Rightarrow x+g(-1)\vdots x^2-x+1$ (vô lý)
Do đó ta có đpcm.
Akai Haruma Giáo viên, mk ko hiểu cái chỗ g(x^3)+x chia hết cho x^2-x+1 với cái dòng tiếp theo ngay sau đó ấy. Bn giải thích rõ đc ko??
Áp dụng định lý Bezout ta được:
chia cho x+1 dư 2
Vì bậc của đa thức chia là 3 nên
Vì nên
Vì f(x) chia cho dư 2x+3 nên
Từ (1) và (2)
Vậy dư f(x) chia cho là
Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\Rightarrow2b=2\Rightarrow b=1\)
Thay b=1 vào lần lượt (1) ,(2),(3) ta được:
\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ từng vế của (4) cho (5) ta được:
\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...
1
Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)
Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1
Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1