Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương
b) Chứng minh rằng tổng các bình phương của không số nguyên liên tiếp (k=3,4,5) không là số chính phương
3)+giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
2)
a
v
à
b
l
ẻ
n
ê
n
a
=
2k+1,
b
=
2m+1
(V
ớ
i
k,
m
N)
a
2
+
b
2
=
(2k+1)
2
+
(2m+1)
2
=
4k
2
+
4k
+
1
+
4m
2
+
4m
+
1
=
4(k
2
+
k
+
m
2
+
m)
+
2
=
4t
+
2
(V
ớ
i
t
N)
Kh
ô
ng
c
ó
s
ố
ch
í
nh
ph
ươ
ng
n
à
o
c
ó
d
ạ
ng
4t
+
2
(t
N)
do
đó
a
2
+
b
2
kh
ô
ng
th
ể
l
à
s
ố
ch
í
nh
ph
ươ
ng