K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2016

cái này trong violympic nè hình như la có 3 cạp hay sao ý ko nhớ lắm

11 tháng 3 2016

=> \(x^6\le160\)

chú ý,x,y phải dương

7 tháng 3 2016

4 cặp bạn nhé

8 tháng 3 2016

bạn giải thế nào vậy

9 tháng 3 2016

đặt x^3=t ( t thuộc Z) ta có:

2t^2-2ty+y^2=64 =>4t^2-4ty+2y^2=128<=> (2t-y)^2+y^2=128 (*)

Các số chính phương chỉ có thể tận cùng là 0;1;4;5;6;9 .Theo (*) tổng 2 số chính phương tận cùng bởi 8, nên 2 số đó có cùng tận cùng là 4. Mặt khác tổng 2 số chính phương này bằng 128 nên 2 số chính phương này bằng nhau và bằng 64, nên:

  1. (2t-y)^2=64
  2. y^2=64

=>

  1. (2t-y)^2=64
  2. y= -8 hoặc 8

* Với y=8  thì (2t-8)^2=64

=>

  • 2t-8=8 =>t=8=>x=2
  • 2t-8=-8=>t=0 =>x=0

* Với y=-8 thì (2t+8)^2=64 

=> 

  • 2t+8=8 =>t=0 =>x=0
  • 2t+8=-8=>t=8 => x=2

vậy có 4 cặp (x;y) =(2;8);(0;8);(0;-8);(-2;-8)

Đồng ý kết bạn đi

9 tháng 3 2016

hình nhứ có 3 cặp thì phải 

10 tháng 10 2017

\(2x^6+y^2-2x^3y=320\)

\(\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)

\(\Leftrightarrow x^6+\left(x^3-y\right)^2=320\)

\(\Rightarrow x^6\le320\)

\(x\in Z\)

\(\Rightarrow x^6=64;1;0\)

Xét từng trường hợp, bạn tìm ra được\(x^6=64\)thõa mãn

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

+ x=2

=>y=-8;24

+x=-2

=>y=8;-24

Vậy\(\left(x;y\right)=\left(2;-8\right);\left(2;24\right);\left(-2;8\right);\left(-2;-24\right)\)

13 tháng 8 2018

\(2x^6+y^2-2x^3y=320\)  \(\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)\(\Leftrightarrow\) \(\left(x^3\right)^2+\left(x^3-y\right)^2=320\)

Vì \(\left(x^3\right)^2\ge0\)và  \(\left(x^3-y\right)^2\ge0\). Đồng thời \(\left(x^3\right)^2\)và  \(\left(x^3-y\right)^2\)cũng là hai số chính phương nên :

(  phân tích 320 thành tổng của 2 số chính phương ) 

\(\left(x^3\right)^2+\left(x^3-y\right)^2=8^2+16^2\) ( Do \(\sqrt[3]{16}\)không là 1 số nguyên nên \(x^3=8\))

Vậy ta có 4 trường hợp : 

+) Trường hợp 1: 

\(\hept{\begin{cases}\left(x^3\right)^2=8^2\\\left(x^3-y\right)^2=16^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^3=8\\x^3-y=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-8\end{cases}}}\)( TM )

+) Trường hợp 2:

\(\hept{\begin{cases}x^3=8\\x^3-y=-16\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=24\end{cases}}\left(TM\right)}\)

+) Trường hợp 3:

\(\hept{\begin{cases}x^3=-8\\x^3-y=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-24\end{cases}\left(TM\right)}}\)

+) Trường hợp 4 :

\(\hept{\begin{cases}x^3=-8\\x^3-y=-16\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=8\end{cases}\left(TM\right)}}\)

Vậy phương trình có 4 cặp nghiệm (x;y) nguyên là (-2;8)  ,   (-2;-24 )   ,   (2;-8)    ;   ( 2; 24 )

1 tháng 3 2017

2x6+y2-2x3y=320

<=> x6 + (x3-y)2 = 320

Vì x; y là các số nguyên nên ta có:

0 <= x6 <= 320

0 <= x2 <= 7 Suy ra x2 = 0; 1; 4

Thay các ẩn x trở lại phương trình ta được các cặp nghiệm nguyên là

(2;24); (-2;-24); (2;-8); (-2;8)

Vậy có 4 cặp (x0;y0) nguyên thỏa mãn bài toán.

1 tháng 3 2017

cảm ơn mong được giúp đỡ nhiều :))